
Package: openCR (via r-universe)
October 23, 2024

Type Package

Title Open Population Capture-Recapture

Version 2.2.7

Date 2024-10-23

Description Non-spatial and spatial open-population capture-recapture
analysis.

Depends R (>= 3.5.0), secr (>= 4.6.1)

Imports abind, MASS, methods, nlme, parallel, plyr, Rcpp (>= 0.12.14),
RcppParallel (>= 5.1.1), stats, stringr, utils

Suggests knitr, RMark, rmarkdown, testthat, R2ucare, secrlinear

LinkingTo BH, Rcpp, RcppParallel

VignetteBuilder knitr

License GPL (>=2)

LazyData yes

LazyDataCompression xz

SystemRequirements GNU make

URL https://www.otago.ac.nz/density/,

https://github.com/MurrayEfford/openCR/

BugReports https://github.com/MurrayEfford/openCR/issues/

Repository https://murrayefford.r-universe.dev

RemoteUrl https://github.com/murrayefford/opencr

RemoteRef HEAD

RemoteSha afb11e7f6f84d9d87d1a4c7042a0ab2e99aee6c2

1

https://www.otago.ac.nz/density/
https://github.com/MurrayEfford/openCR/
https://github.com/MurrayEfford/openCR/issues/

2 Contents

Contents
openCR-package . 3
age.matrix . 4
AIC.openCR . 5
classMembership . 8
cloned.fit . 9
collate . 10
cumMove . 11
derived . 14
dipperCH . 16
expected.d . 17
Field vole . 19
gonodontisCH . 21
Internal . 23
JS.counts . 26
JS.direct . 27
LLsurface . 28
make.kernel . 30
make.table . 33
makeNewData . 34
matchscale . 35
Microtus . 36
miscellaneous . 39
modelAverage . 40
Movement models . 42
moving.fit . 44
openCR-defunct . 46
openCR-deprecated . 46
openCR.design . 47
openCR.fit . 49
openCRlist . 55
par.openCR.fit . 56
pkernel . 58
plot.derivedopenCR . 60
plot.openCR . 61
PPNpossums . 62
predict.openCR . 64
print.derivedopenCR . 65
print.openCR . 65
read.inp . 67
rev.capthist . 68
simulation . 69
squeeze . 73
strata . 74
stratify . 75
ucare.cjs . 76

Index 79

openCR-package 3

openCR-package Open Population Capture–Recapture Models

Description

Functions for non-spatial open population analysis by Cormack-Jolly-Seber (CJS) and Jolly-Seber-
Schwarz-Arnason (JSSA) methods, and by spatially explicit extensions of these methods. The
methods build on Schwarz and Arnason (1996), Borchers and Efford (2008) and Pledger et al.
(2010) (see vignette for more comprehensive references and likelihood). The parameterisation of
JSSA recruitment is flexible (options include population growth rate λ, per capita recruitment f
and seniority γ). Spatially explicit analyses may assume home-range centres are fixed or allow
dispersal between primary sessions according to various probability kernels, including bivariate
normal (BVN) and bivariate t (BVT) (Efford and Schofield 2022).

Details

Package: openCR
Type: Package
Version: 2.2.7
Date: 2024-10-23
License: GNU General Public License Version 2 or later

Data are observations of marked individuals from a ‘robust’ sampling design (Pollock 1982). Pri-
mary sessions may include one or more secondary sessions. Detection histories are assumed to be
stored in an object of class ‘capthist’ from the package secr. Grouping of occasions into primary
and secondary sessions is coded by the ‘intervals’ attribute (zero for successive secondary sessions).

A few test datasets are provided (microtusCH, FebpossumCH, dipperCH, gonodontisCH, fieldvoleCH)
and some from secr are also suitable e.g. ovenCH and OVpossumCH.

Models are defined using symbolic formula notation. Possible predictors include both pre-defined
variables (b, session etc.), corresponding to ‘behaviour’ and other effects), and user-provided co-
variates.

Models are fitted by numerically maximizing the likelihood. The function openCR.fit creates an
object of class openCR. Generic methods (print, AIC, etc.) are provided for each object class.

A link at the bottom of each help page takes you to the help index.

See openCR-vignette.pdf for more.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

4 age.matrix

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. and Schofield, M. R. (2020) A spatial open-population capture–recapture model.
Biometrics 76, 392–402.

Efford, M. G. and Schofield, M. R. (2022) A review of movement models in open population
capture–recapture. Methods in Ecology and Evolution 13, 2106–2118. https://doi.org/10.1111/2041-
210X.13947

Glennie, R., Borchers, D. L., Murchie, M. Harmsen, B. J., and Foster, R. J. (2019) Open population
maximum likelihood spatial capture–recapture. Biometrics 75, 1345–1355

Pledger, S., Pollock, K. H. and Norris, J. L. (2010) Open capture–recapture models with hetero-
geneity: II. Jolly-Seber model. Biometrics 66, 883–890.

Pollock, K. H. (1982) A capture–recapture design robust to unequal probability of capture. Journal
of Wildlife Management 46, 752–757.

Schwarz, C. J. and Arnason, A. N. (1996) A general methodology for the analysis of capture-
recapture experiments in open populations. Biometrics 52, 860–873.

See Also

openCR.fit, capthist, ovenCH

Examples

Not run:

a CJS model is fitted by default
openCR.fit(ovenCH)

End(Not run)

age.matrix Session-specific Ages

Description

A matrix showing the age of each animal at each secondary session (occasion).

Usage

age.matrix(capthist, initialage = 0, minimumage = 0, maximumage = 1,
collapse = FALSE, unborn = minimumage)

AIC.openCR 5

Arguments

capthist single-session capthist object

initialage numeric or character name of covariate with age at first detection (optional)

minimumage integer minimum age

maximumage integer maximum age

collapse logical; if TRUE then values for each individual are collapsed as a string with
no spaces

unborn numeric code for age<0

Details

age.matrix is used by openCR.design for the predictors ‘age’ and ‘Age’.

Computations use the intervals attribute of capthist, which may be non-integer.

Ages are inferred for occasions before first detection, back to the minimum age.

Value

Either a numeric matrix with dimensions (number of animals, number of secondary occasions) or
if collapse = TRUE a character matrix with one column.

See Also

openCR.design

Examples

age.matrix(join(ovenCH), maximumage = 2, collapse = TRUE)

AIC.openCR Compare openCR Models

Description

Terse report on the fit of one or more spatially explicit capture–recapture models. Models with
smaller values of AIC (Akaike’s Information Criterion) are preferred.

Usage

S3 method for class 'openCR'
AIC(object, ..., sort = TRUE, k = 2, dmax = 10, use.rank = FALSE,

svtol = 1e-5, criterion = c('AIC','AICc'), n = NULL)

S3 method for class 'openCRlist'
AIC(object, ..., sort = TRUE, k = 2, dmax = 10, use.rank = FALSE,

6 AIC.openCR

svtol = 1e-5, criterion = c('AIC','AICc'), n = NULL)

S3 method for class 'openCR'
logLik(object, ...)

Arguments

object openCR object output from the function openCR.fit, or openCRlist

... other openCR objects

sort logical for whether rows should be sorted by ascending AICc

k numeric, the penalty per parameter to be used; always k = 2 in this method

dmax numeric, the maximum AIC difference for inclusion in confidence set

use.rank logical; if TRUE the number of parameters is based on the rank of the Hessian
matrix

svtol minimum singular value (eigenvalue) of Hessian used when counting non-redundant
parameters

criterion character, criterion to use for model comparison and weights

n integer effective sample size

Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional).

AIC with small sample adjustment is given by

AICc = −2 log(L(θ̂)) + 2K +
2K(K + 1)

n−K − 1

where K is the number of “beta" parameters estimated. By default, the effective sample size n
is the number of individuals observed at least once (i.e. the number of rows in capthist). This
differs from the default in MARK which for CJS models is the sum of the sizes of release cohorts
(see m.array).

Model weights are calculated as

wi =
exp(−∆i/2)∑
exp(−∆i/2)

Models for which dAIC > dmax are given a weight of zero and are excluded from the summation.
Model weights may be used to form model-averaged estimates of real or beta parameters with
modelAverage (see also Buckland et al. 1997, Burnham and Anderson 2002).

The argument k is included for consistency with the generic method AIC.

AIC.openCR 7

Value

A data frame with one row per model. By default, rows are sorted by ascending AIC.

model character string describing the fitted model
npar number of parameters estimated
rank rank of Hessian
logLik maximized log likelihood
AIC Akaike’s Information Criterion
AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)
dAICc difference between AICc of this model and the one with smallest AIC
AICwt AICc model weight

logLik.openCR returns an object of class ‘logLik’ that has attribute df (degrees of freedom =
number of estimated parameters).

Note

The default criterion is AIC, not AICc as in secr 3.1.

Computed values differ from MARK for various reasons. MARK uses the number of observations,
not the number of capture histories when computing AICc. It is also likely that MARK will count
parameters differently.

It is not be meaningful to compare models by AIC if they relate to different data.

The issue of goodness-of-fit and possible adjustment of AIC for overdispersion has yet to be ad-
dressed (cf QAIC in MARK).

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

See Also

AIC, openCR.fit, print.openCR, LR.test

Examples

Not run:
m1 <- openCR.fit(ovenCH, type = 'JSSAf')
m2 <- openCR.fit(ovenCH, type = 'JSSAf', model = list(p~session))
AIC(m1, m2)

End(Not run)

8 classMembership

classMembership Class Membership Probability for Mixture Models

Description

Finite mixture models treat class membership as a latent random variable. The probability of an
individual’s membership in each class may be inferred retrospectively from the relative likelihoods.

Usage

S3 method for class 'openCR'
classMembership(object, fullCH = NULL, ...)

Arguments

object fitted model of class openCR

fullCH capthist object (optional)

... other arguments (not used)

Details

It is assumed that the input model includes finite mixture terms (h2 or h3).

As the detection histories are saved in compressed (“squeezed”) form in openCR objects the original
animal identifiers are lost and the order of animals may change. These may be restored by providing
fullCH.

No class can be assigned from a CJS model for animals detected only in the final session.

Value

Matrix with one row per individual and columns for each class and the class number of the most
likely class.

Note

In earlier versions openCR.fit always computed class membership and saved it in component
‘posterior’ of the fitted model. classMembership replaces that functionality.

See Also

openCR.fit, squeeze

cloned.fit 9

Examples

Not run:
jch <- join(ovenCH)
fit <- openCR.fit(ovenCH, model=p~h2)
classMembership(fit, jch)

End(Not run)

cloned.fit Cloning to Evaluate Identifiability

Description

The identifiability of parameters may be examined by refitting a model with cloned data (each
capture history replicated nclone times). For identifiable parameters the estimated variances are
proportional to 1/nclone.

Usage

cloned.fit(object, nclone = 100, newdata = NULL, linkscale = FALSE)

Arguments

object previously fitted openCR object

nclone integer number of times to replicate each capture history

newdata optional dataframe of values at which to evaluate model

linkscale logical; if TRUE then comparison uses SE of linear predictors

Details

The key output is the ratio of SE for estimates from the uncloned and cloned datasets, adjusted for
the level of cloning (nclone). For identifiable parameters the ratio is expected to be 1.0.

Cloning is not implemented for spatial models.

The comparison may be done either on the untransformed scale (using approximate SE) or on the
link scale.

Value

Dataframe with columns* –

estimate original estimate

SE.estimate original SE

estimate.xxx cloned estimate (xxx = nclone)

10 collate

SE.estimate.xxx

cloned SE

SE.ratio SE.estimate / SE.estimate.xxx / sqrt(nclone)

* ‘estimate’ becomes ‘beta’ when linkscale = TRUE.

References

Lele, S.R., Nadeem, K. and Schmuland, B. (2010) Estimability and likelihood inference for gener-
alized linear mixed models using data cloning. Journal of the American Statistical Association 105,
1617–1625.

See Also

openCR.fit

Examples

Not run:
fit <- openCR.fit(dipperCH)
cloned.fit(fit)

End(Not run)

collate Array of Parameter Estimates

Description

Estimates from one or more openCR models are formed into an array.

Usage

S3 method for class 'openCR'
collate(object, ..., realnames = NULL, betanames = NULL,

newdata = NULL, alpha = 0.05, perm = 1:4, fields = 1:4)

S3 method for class 'openCRlist'
collate(object, ..., realnames = NULL, betanames = NULL,

newdata = NULL, alpha = 0.05, perm = 1:4, fields = 1:4)

cumMove 11

Arguments

object openCR or openCRlist objects

... other openCR objects

realnames character vector of real parameter names

betanames character vector of beta parameter names

newdata optional dataframe of values at which to evaluate models

alpha alpha level for confidence intervals

perm permutation of dimensions in output

fields vector to restrict summary fields in output

Details

collate extracts parameter estimates from a set of fitted openCR model objects. fields may be
used to select a subset of summary fields ("estimate","SE.estimate","lcl","ucl") by name or number.

Value

A 4-dimensional array of model-specific parameter estimates. By default, the dimensions corre-
spond respectively to

• rows in newdata (usually sessions),

• models,

• statistic fields (estimate, SE.estimate, lcl, ucl), and

• parameters ("phi", "sigma" etc.).

It often helps to reorder the dimensions with the perm argument.

See Also

modelAverage.openCR, make.table

cumMove Probability Distribution After Movement

Description

Compute the compounding effect of a random walk defined by a discrete kernel. The number of
steps and the edge algorithm are specified by the user. The function was used to generate Fig. 3 of
Efford (2022). The final distribution may be summed for points lying within an arbitrary polygon.
This is a simple way to compute the expected proportion remaining within a particular region (i.e.
not “emigrating").

12 cumMove

Usage

cumMove(X, mask, kernel, edgemethod = c("truncate", "wrap", "none"), nstep = 1,
mqarray = NULL, settlecov = NULL)

proportionInPolygon(mask, poly, cov = "pm")

Arguments

X initial location(s) (see Details)

mask habitat mask

kernel kernel object

edgemethod character

nstep non-negative integer

mqarray integer array of lookup indices

settlecov character name of covariate of mask

poly a polygon (see Details)

cov character name of covariate of mask

Details

The input X may be -

• a vector of length 2 for the coordinates of a single point

• a mask with covariate ’pm’ representing the initial distribution

• a SpatialPolygons object from sp. Animals are assumed initially to be distributed uniformly
across mask points that lie within the polygon.

The default edgemethod truncates the kernel at the edge and re-normalizes the cell probabilities so
that all destinations lie within the boundary of the mask.

settlecov may name a covariate of mask that has settlement weights in range 0–1.

For proportionInPolygon, the input mask may be the output from cumMove. The polygon poly
may be specified as for pointsInPolygon (e.g., SpatialPolygons object or 2-column matrix of
coordinates) or as a list with components x and y. A list of polygon specifications is also accepted.

mqarray is computed automatically if not provided. Precomputing the array can save time but is
undocumented.

Value

For cumMove - a mask object with initial probability distribution in covariate ’pm0’ and final dis-
tribution in covariate ’pm’.

For proportionInPolygon - vector of the summed weights (probabilities) for cells centred in the
polygon(s) as a proportion of all non-missing weights.

cumMove 13

References

Efford, M. G. (2022) . Efficient discretization of movement kernels for spatiotemporal capture–
recapture. Journal of Agricultural, Biological and Environmental Statistics. In press. https://doi.org/10.1007/s13253-
022-00503-4

See Also

make.kernel, pointsInPolygon

Examples

sp <- 10
msk <- make.mask(nx = 51, ny = 51, type = 'rect', spacing = sp,

buffer = 0)
k <- make.kernel('BVN', 20, spacing = sp, move.a = 50, clip = TRUE,

sparse = TRUE)

initial distribution a central point
X <- apply(msk, 2, mean)
par(mfrow = c(1,4), mar = c(1,1,2,1))
for (step in 0:2) {

X <- cumMove(X, msk, k, nstep = min(step,1))
plot(X, cov = 'pm', dots = FALSE, legend = FALSE, breaks =

seq(0,0.006,0.0001))
mtext(side = 3, line = 0, paste('Step', step), cex = 0.9)

contour(
x = unique(X$x),
y = unique(X$y),
z = matrix(covariates(X)$pm, nrow = length(unique(X$x))),
levels = c(0.0002),
drawlabels = FALSE,
add = TRUE)

}

Not run:
initial distribution across a polygon
X0 <- matrix(c(200,200,300,300,200,200,300,300,200,200), ncol = 2)
X <- X0
par(mfrow = c(1,4), mar = c(1,1,2,1))
for (step in 0:3) {

X <- cumMove(X, msk, k, nstep = min(step,1))
plot(X, cov = 'pm', dots = FALSE, legend = FALSE, breaks =

seq(0,0.006,0.0001))
mtext(side = 3, line = 0, paste('Step', step), cex = 0.9)

contour(
x = unique(X$x),
y = unique(X$y),
z = matrix(covariates(X)$pm, nrow = length(unique(X$x))),
levels = c(0.0002),
drawlabels = FALSE,
add = TRUE)

}

14 derived

polygon(X0)
proportionInPolygon(X, X0)

End(Not run)

derived Derived Parameters From openCR Models

Description

For ..CL openCR models, compute the superpopulation size or density. For all openCR models,
compute the time-specific population size or density from the estimated superpopulation size and
the turnover parameters.

Usage

S3 method for class 'openCR'
derived(object, newdata = NULL, all.levels = FALSE, Dscale = 1,

HTbysession = FALSE, ...)
S3 method for class 'openCRlist'
derived(object, newdata = NULL, all.levels = FALSE, Dscale = 1,

HTbysession = FALSE, ...)
openCR.esa(object, bysession = FALSE, stratum = 1)
openCR.pdot(object, bysession = FALSE, stratum = 1)

Arguments

object fitted openCR model
newdata optional dataframe of values at which to evaluate model
all.levels logical; passed to makeNewData if newdata not specified
Dscale numeric to scale density
HTbysession logical; Horvitz-Thompson estimates by session (see Details)
... other arguments (not used)
bysession logical; if TRUE then esa or pdot is computed separately for each session
stratum integer

Details

Derived estimates of density and superD are multiplied by Dscale. Use Dscale = 1e4 for animals
per 100 sq. km. openCR.esa and openCR.pdot are used internally by derived.openCR.

If HTbysession then a separate H-T estimate is derived for each primary session; otherwise a H-
T estimate of the superpopulation is used in combination with turnover parameters (phi, beta) to
obtain session-specific estimates. Results are often identical.

The output is an object with its own print method (see print.derivedopenCR).

The code does not yet allow user-specified newdata.

derived 15

Value

derived returns an object of class c(“derivedopenCR",“list"), list with these components:

totalobserved number of different individuals detected

parameters character vector; names of parameters in model (excludes derived parameters)

superN superpopulation size (non-spatial models only)

superD superpopulation density (spatial models only)

estimates data frame of counts and estimates

Dscale numeric multiplier for printing densities

If newdata has multiple levels then the value is a list of such objects, one for each level.

openCR.pdot returns a vector of experiment-wide detection probabilities under the fitted model
(one for each detected animal).

openCR.esa returns a vector of effective sampling areas under the fitted model (one for each de-
tected animal). If ’bysession = TRUE’ the result is a list with one component per session.

Note

Prior to 1.4.5, openCR.esa did not expand the result for squeezed capture histories (freq>1) and did
not return a list when bysession = TRUE.

See Also

openCR.fit, print.derivedopenCR

Examples

Not run:

override default method to get true ML for L1
L1CL <- openCR.fit(ovenCH, type = 'JSSAlCL', method = 'Nelder-Mead')
predict(L1CL)
derived(L1CL)

compare to above
L1 <- openCR.fit(ovenCH, type = 'JSSAl', method = 'Nelder-Mead')
predict(L1)
derived(L1)

End(Not run)

16 dipperCH

dipperCH Dippers

Description

Lebreton et al. (1992) demonstrated Cormack-Jolly-Seber methods with a dataset on European
Dipper (*Cinclus cinclus*) collected by Marzolin (1988) and the data have been much used since
then. Dippers were captured annually over 1981–1987. We use the version included in the RMark
package (Laake 2013).

Usage

dipperCH

Format

The format is a single-session secr capthist object. As these are non-spatial data, the traps attribute
is NULL.

Details

Dippers were sampled in 1981–1987.

Source

MARK example dataset ‘ed.inp’. Also RMark (Laake 2013). See Examples.

References

Laake, J. L. (2013). RMark: An R Interface for Analysis of Capture–Recapture Data with MARK.
AFSC Processed Report 2013-01, 25p. Alaska Fisheries Science Center, NOAA, National Marine
Fisheries Service, 7600 Sand Point Way NE, Seattle WA 98115.

Lebreton, J.-D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992) Modeling survival and test-
ing biological hypotheses using marked animals: a unified approach with case studies. Ecological
Monographs 62, 67–118.

Marzolin, G. (1988) Polygynie du Cincle plongeur (*Cinclus cinclus*) dans les c?tes de Lorraine.
L’Oiseau et la Revue Francaise d’Ornithologie 58, 277–286.

See Also

read.inp

expected.d 17

Examples

m.array(dipperCH)

Not run:

From file 'ed.inp' in MARK input format
datadir <- system.file('extdata', package = 'openCR')
dipperCH <- read.inp(paste0(datadir, '/ed.inp'), grouplabel='sex',

grouplevels = c('Male','Female'))
intervals(dipperCH) <- rep(1,6)
sessionlabels(dipperCH) <- 1981:1987 # labels only

or extracted from the RMark package with this code
if (require(RMark)) {

if (all (nchar(Sys.which(c('mark.exe','mark64.exe', 'mark32.exe'))) < 2))
stop ("MARK executable not found; set e.g. MarkPath <- 'c:/Mark/'")

data(dipper) # retrieve dataframe of dipper capture histories
dipperCH2 <- unRMarkInput(dipper) # convert to secr capthist object
intervals(dipperCH2) <- rep(1,6)
sessionlabels(dipperCH2) <- 1981:1987 # labels only

} else message ("RMark not found")

The objects dipperCH and dipperCH2 differ in the order of factor levels for 'sex'

End(Not run)

expected.d Expected Distance Moved

Description

Movement models in openCR differ in their parameterisation so direct comparison can be diffi-
cult. The expected distance moved is a convenient statistic common to all models. This function
computes the expected distance from various inputs, including fitted models.

Usage

expected.d(movementmodel, move.a, move.b, truncate = Inf, mask = NULL,
min.d = 1e-4, ...)

Arguments

movementmodel character or function or kernel or openCR object

move.a numeric parameter of kernel

move.b numeric parameter of kernel

truncate radius of truncation

18 expected.d

mask habitat mask object

min.d numeric lower bound of integration (see Details)

... other arguments passed to make.kernel if input is a fitted model

Details

The input movementmodel may be

• fitted openCR model

• user kernel function g(r)

• kernel object

• character name of kernel model see Movement models

If truncate (R) is finite or movementmodel is a function then the expected value is computed by
numerical integration E(d) =

∫ R

0
r.f(r)dr. In the event that f(0) is not finite, min.d is used as the

lower bound.

mask is used only for ‘uncorrelated’ and ‘uncorrelatedzi’ movement. For these models the expected
movement is merely the average distance between points on the mask, weighted by (1-zi) if zero-
inflated (uncorrelatedzi).

The . . . argument is useful for (i) selecting a session from a fitted model, or (ii) specifying the
upper or lower confidence limits from a single-parameter fitted model via the ‘stat’ argument of
make.kernel.

Value

A numeric value (zero for ’static’ model, NA if model unrecognised).

References

Efford, M. G. and Schofield, M. R. (2022) A review of movement models in open population
capture–recapture. Methods in Ecology and Evolution 13, 2106–2118. https://doi.org/10.1111/2041-
210X.13947

See Also

Movement models, make.kernel, pkernel, qkernel

Examples

expected.d('BVT', move.a = 20, move.b = 1)
expected.d('BVT', move.a = 20, move.b = 1, truncate = 300)

k <- make.kernel(movementmodel = 'BVT', spacing = 10, move.a = 20, move.b = 1)
expected.d(k)

Field vole 19

Field vole Kielder Field Voles

Description

Captures of Microtus agrestis on a large grid in a clearcut within Kielder Forest, northern England,
June–August 2000 (Ergon and Gardner 2014). Robust-design data from four primary sessions of
3–5 secondary sessions each.

Usage

fieldvoleCH

Format

The format is a multi-session secr capthist object. Attribute ‘ampm’ codes for type of secondary
session (am, pm).

Details

Ergon and Lambin (2013) provided a robust design dataset from a trapping study on field voles
Microtus agrestis in a clearcut within Kielder Forest, northern England – see also Ergon et al.
(2011), Ergon and Gardner (2014) and Reich and Gardner (2014). The study aimed to describe sex
differences in space-use, survival and dispersal among adult voles. Data were from one trapping
grid in summer 2000.

Trapping was on a rectangular grid of 192 multi-catch (Ugglan Special) traps at 7-metre spacing.
Traps were baited with whole barley grains and carrots; voles were marked with individually num-
bered ear tags.

Four trapping sessions were conducted at intervals of 21 to 23 days between 10 June and 15 August.
Traps were checked at about 12 hour intervals (6 am and 6 pm).

The attribute ‘ampm’ is a data.frame with a vector of codes, one per secondary session, to separate
am and pm trap checks (1 = evening, 2 = morning). The four primary sessions had respectively 3,
5, 4 and 5 trap checks.

Ergon and Gardner (2014) restricted their analysis to adult voles (118 females and 40 males). His-
tories of five voles (ma193, ma239, ma371, ma143, ma348) were censored part way through the
study because they died in traps (T. Ergon pers. comm.).

Source

Data were retrieved from DRYAD (Ergon and Lambin (2013) for openCR. Code for translating the
DRYAD ASCII file into a capthist object is given in Examples.

20 Field vole

References

Efford, M. G. (2019) Multi-session models in secr 4.1. https://www.otago.ac.nz/density/
pdfs/secr-multisession.pdf

Ergon, T., Ergon, R., Begon, M., Telfer, S. and Lambin, X. (2011) Delayed density- dependent
onset of spring reproduction in a fluctuating population of field voles. Oikos 120, 934–940.

Ergon, T. and Gardner, B. (2014) Separating mortality and emigration: modelling space use, dis-
persal and survival with robust-design spatial capture–recapture data. Methods in Ecology and
Evolution 5, 1327–1336.

Ergon, T. and Lambin, X. (2013) Data from: Separating mortality and emigration: Modelling space
use, dispersal and survival with robust-design spatial capture–recapture data. Dryad Digital Repos-
itory. doi:10.5061/dryad.r17n5.

Reich, B. J. and Gardner, B. (2014) A spatial capture–recapture model for territorial species. Envi-
ronmetrics 25, 630–637.

Examples

summary(fieldvoleCH, terse = TRUE)
m.array(fieldvoleCH)
JS.counts(fieldvoleCH)

attr(fieldvoleCH, 'ampm')

Not run:

maleCH <- subset(fieldvoleCH, function(x) covariates(x) == 'M')
fit <- openCR.fit(maleCH)
predict(fit)

Read data object from DRYAD ASCII file

datadir <- system.file('extdata', package = 'openCR')
EG <- dget(paste0(datadir,'/ergonandgardner2013.rdat'))

construct capthist object
onesession <- function (sess) {

mat <- EG$H[,,sess]
id <- as.numeric(row(mat))
occ <- as.numeric(col(mat))
occ[mat<0] <- -occ[mat<0]
trap <- abs(as.numeric(mat))
matrow <- rownames(mat)
df <- data.frame(session = rep(sess, length(id)),

ID = matrow[id],
occ = occ,
trapID = trap,
sex = c('F','M')[EG$gr],
row.names = 1:length(id))

retain captures (trap>0)
df[df$trapID>0, , drop = FALSE]

}

https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://doi.org/10.5061/dryad.r17n5

gonodontisCH 21

tr <- read.traps(data = data.frame(EG$X), detector = "multi")

recode matrix as mixture of zeros and trap numbers
EG$H <- EG$H-1

code censored animals with negative trap number
two ways to recognise censoring
censoredprimary <- which(EG$K < 4)
censoredsecondary <- which(apply(EG$J,1,function(x) any(x-c(3,5,4,5) < 0)))
censored <- unique(c(censoredprimary, censoredsecondary))
rownames(EG$H)[censored]
[1] "ma193" "ma239" "ma371" "ma143" "ma348"
censorocc <- apply(EG$H[censored,,], 1, function(x) which.max(cumsum(x)))
censor3 <- ((censorocc-1) %/% 5)+1 # session
censor2 <- censorocc - (censor3-1) * 5 # occasion within session
censori <- cbind(censored, censor2, censor3)
EG$H[censori] <- -EG$H[censori]

lch <- lapply(1:4, onesession)
ch <- make.capthist(do.call(rbind,lch), tr=tr, covnames='sex')

apply intervals in months
intervals(ch) <- EG$dt

fieldvoleCH <- ch

extract time covariate - each secondary session was either am (2) or pm (1)
EG$tod
1 2 3 4 5
1 2 1 2 NA NA
2 2 1 2 1 1
3 2 1 2 1 NA
4 2 1 2 1 2
Note consecutive pm trap checks in session 2
ampm <- split(EG$tod, 1:4)
ampm <- lapply(ampm, na.omit)
attr(fieldvoleCH, 'ampm') <- data.frame(ampm = unlist(ampm))

End(Not run)

gonodontisCH Gonodontis Moths

Description

Non-spatial open-population capture–recapture data of Bishop et al. (1978) for nonmelanic male
Gonodontis bidentata at Cressington Park, northwest England.

22 gonodontisCH

Usage

gonodontisCH

Format

The format is a single-session secr capthist object. As these are non-spatial data, the traps attribute
is NULL.

Details

The data are from a study of the relative fitness of melanic and nonmelanic morphs of the moth
Gonodontis bidentata at several sites in England (Bishop et al. 1978). Crosbie (1979; see also
Crosbie and Manly 1985) selected a subset of the Bishop et al. data (nonmelanic males from
Cressington Park) to demonstrate innovations in Jolly-Seber modelling, and the same data were
used by Link and Barker (2005) and Schofield and Barker (2008). The present data are those used
by Crosbie (1979) and Link and Barker (2005).

Male moths were attracted to traps which consisted of a cage containing phermone-producing fe-
males surrounded by an enclosure which the males could enter but not leave. New virgin females
were usually added every 1 to 4 days. Moths were marked at each capture with a date-specific mark
in enamel paint or felt-tip pen on the undersurface of the wing. Thus, although moths at Cressington
Park were not marked individually, each moth was a flying bearer of its own capture history.

The data comprise 689 individual capture histories for moths captured at 8 traps operated over 17
days (24 May–10 June 1970). The traps were in a square that appears have been about 40 m on
a side. The location of captures is not included in the published data. All captured moths appear
to have been marked and released (i.e. there were no removals recorded). All captures on Day 17
were recaptures; it is possible that unmarked moths were not recorded on that day.

Both Table 1 and Appendix 1 (microfiche) of Bishop et al. (1978) refer to 690 capture histories
of nonmelanics at Cressington Park. In the present data there are only 689, and there are other
minor discrepancies. Also, Crosbie and Manly (1985: Table 1) refer to 82 unique capture histories
(“distinct cmr patterns”) when there are only 81 in the present dataset (note that two moths share
00000000000000011).

Source

Richard Barker provided an electronic copy of the data used by Link and Barker (2005), copied
from Crosbie (1979).

References

Bishop, J. A., Cook, L. M., and Muggleton, J. (1978). The response of two species of moth to indus-
trialization in northwest England. II. Relative fitness of morphs and population size. Philosophical
Transactions of the Royal Society of London B281, 517–540.

Crosbie, S. F. (1979) The mathematical modelling of capture–mark–recapture experiments on ani-
mal populations. Ph.D. Thesis, University of Otago, Dunedin, New Zealand.

Crosbie, S. F. and Manly, B. F. J. (1985) Parsimonious modelling of capture–mark–recapture stud-
ies. Biometrics 41, 385–398.

Internal 23

Link, W. A. and Barker, R. J. (2005) Modeling association among demographic parameters in
analysis of open-population capture–recapture data. Biometrics 61, 46–54.

Schofield, M. R. and Barker, R. J. (2008) A unified capture–recapture framework. Journal of Agri-
cultural Biological and Environmental Statistics 13, 458–477.

Examples

summary(gonodontisCH)
m.array(gonodontisCH)

Not run:
compare default (CJS) estimates from openCR, MARK

fit <- openCR.fit(gonodontisCH)
predict(fit)

if (require(RMark)) {
MarkPath <- 'c:/Mark/' # customize as needed
if (!all (nchar(Sys.which(c('mark.exe','mark64.exe', 'mark32.exe'))) < 2)) {

mothdf <- RMarkInput(gonodontisCH)
mark(mothdf)
cleanup(ask = FALSE)

} else message ("mark.exe not found")
} else message ("RMark not found")

End(Not run)

Internal Internal Functions

Description

Functions called by openCR.fit when details$R == TRUE, and some others

Usage

prwi (type, n, x, jj, cumss, nmix, w, fi, li, openval, PIA, PIAJ, intervals, CJSp1)

prwisecr (type, n, x, nc, jj, kk, mm, nmix, cumss, w, fi, li, gk, openval,
PIA, PIAJ, binomN, Tsk, intervals, h, hindex, CJSp1, moveargsi,
movementcode, sparsekernel, edgecode, usermodel, kernel = NULL,
mqarray = NULL, cellsize = NULL, r0)

PCH1 (type, x, nc, cumss, nmix, openval0, PIA0, PIAJ, intervals)

PCH1secr (type, individual, x, nc, jj, cumss, kk, mm, openval0, PIA0, PIAJ, gk0,
binomN, Tsk, intervals, moveargsi, movementcode, sparsekernel, edgecode,

24 Internal

usermodel, kernel, mqarray, cellsize, r0)

pradelloglik (type, w, openval, PIAJ, intervals)

cyclic.fit (..., maxcycle = 10, tol = 1e-5, trace = FALSE)

Arguments

type character

n integer index of capture history

x integer index of latent class

jj integer number of primary sessions

cumss integer vector cumulative number of secondary sessions at start of each primary
session

nmix integer number of latent classes

w array of capture histories

fi integer first primary session

li integer last primary session

openval dataframe of real parameter values (one unique combination per row)

PIA parameter index array (secondary sessions)

PIAJ parameter index array (primary sessions)

intervals integer vector

h numeric 3-D array of hazard (mixture, mask position, hindex)

hindex integer n x s matrix indexing h for each individual, secondary session

CJSp1 logical; should CJS likelihood include first primary session?

moveargsi integer 2-vector for index of move.a, move.b (negative if unused)

movementcode integer 0 static, 1 uncorrelated etc.

sparsekernel logical; if TRUE then only cardinal and intercardinal axes are included

edgecode integer 0 none, 1 wrap, 2 truncate

usermodel function to fill kernel

kernel dataframe with columns x,y relative coordinates of kernel cell centres

mqarray integer matrix

cellsize numeric length of side of kernel cell

r0 numeric; effective radius of zero cell for movement models (usually 0.5)

gk real array

Tsk array detector usage

openval0 openval for naive animals

PIA0 PIA for naive animals

individual logical; TRUE if model uses individual covariates

Internal 25

gk0 gk for naive animals

nc number of capture histories

kk number of detectors

mm number of points on habitat mask

binomN code for distribution of counts (see secr.fit)

... named arguments passed to openCR.fit or predict (see extractFocal)

maxcycle integer maximum number of cycles (maximizations of a given parameter)

tol absolute tolerance for improvement in log likelihood

trace logical; if TRUE a status message is given at each maximization

Details

cyclic.fit implements cyclic fixing more or less as described by Schwarz and Arnason (1996)
and used by Pledger et al. (2010). The intention is to speed up maximization when there are many
(beta) parameters. However, fitting is slower than with a single call to openCR.fit, and the function
is here only as a curiosity (it is not exported in 1.2.0).

Value

cyclic.fit returns a fitted model object of class ‘openCR’.

Other functions return numeric components of the log likelihood.

References

Pledger, S., Pollock, K. H. and Norris, J. L. (2010) Open capture–recapture models with hetero-
geneity: II. Jolly-Seber model. Biometrics 66, 883–890.

Schwarz, C. J. and Arnason, A. N. (1996) A general methodology for the analysis of capture-
recapture experiments in open populations. Biometrics 52, 860–873.

See Also

openCR.fit

Examples

Not run:

openCR:::cyclic.fit(capthist = dipperCH, model = list(p~t, phi~t), tol = 1e-5, trace = TRUE)

End(Not run)

26 JS.counts

JS.counts Summarise Non-spatial Open-population Data

Description

Simple conventional summaries of data held in secr ‘capthist’ objects.

Usage

JS.counts(object, primary.only = TRUE, stratified = FALSE)
m.array(object, primary.only = TRUE, never.recaptured = TRUE,

last.session = TRUE, stratified = FALSE)
bd.array(beta, phi)

Arguments

object secr capthist object or similar

primary.only logical; if TRUE then counts are tabuated for primary sessions

stratified logical; if TRUE then sessions of multisession object summarised separately
never.recaptured

logical; if TRUE then a column is added for animals never recaptured

last.session logical; if TRUE releases are reported for the last session

beta numeric vector of entry probabilities, one per primary session

phi numeric vector of survival probabilities, one per primary session

Details

The input is a capthist object representing a multi-session capture–recapture study. This may be
(i) a single-session capthist in which occasions are understood to represent primary sessions, or (ii)
a multi-session capthist object that is automatically converted to a single session object with join
(any secondary sessions (occasions) are first collapsed with reduce(object, by = 'all')*, or (iii)
a multi-session capthist object in which sessions are interpreted as strata.

The argument primary.only applies for single-session input with a robust-design structure defined
by the intervals. last.session results in a final row with no recaptures.

If the covariates attribute of object includes a column named ‘freq’ then this is used to expand the
capture histories.

Conventional Jolly–Seber estimates may be computed with JS.direct.

bd.array computes the probability of each possible combination of birth and death times (strictly,
the primary session at which an animal was first and last available for detection), given the parameter
vectors beta and phi. These cell probabilities are integral to JSSA models.

* this may fail with nonspatial data.

JS.direct 27

Value

For JS.counts, a data.frame where rows correspond to sessions and columns hold counts as follows
–

n number of individuals detected

R number of individuals released

m number of previously marked individuals

r number of released individuals detected in later sessions

z number known to be alive (detected before and after) but not detected in current
session

For m.array, a table object with rows corresponding to release cohorts and columns corresponding
to first–recapture sessions. The size of the release cohort is shown in the first column. Cells in the
lower triangle have value NA and print as blank by default.

See Also

join, JS.direct

Examples

JS.counts(ovenCH)
m.array(ovenCH)

Not run:

probabilities of b,d pairs
fit <- openCR.fit(ovenCH, type = 'JSSAbCL')
beta <- predict(fit)bestimate
phi <- predict(fit)phiestimate
bd.array(beta, phi)

End(Not run)

JS.direct Jolly–Seber Estimates

Description

Non-spatial open-population estimates using the conventional closed-form Jolly–Seber estimators
(Pollock et al. 1990).

Usage

JS.direct(object)

28 LLsurface

Arguments

object secr capthist object or similar

Details

Estimates are the session-specific Jolly-Seber estimates with no constraints.

The reported SE of births (B) differ slightly from those in Pollock et al. (1990), and may be in error.

Value

A dataframe in which the first 5 columns are summary statistics (counts from JS.counts) and the
remaining columns are estimates:

p capture probability

N population size

phi probability of survival to next sample time

B number of recruits at next sample time

Standard errors are in fields prefixed ‘se’; for N and B these include only sampling variation and
omit population stochasticity. The covariance of successive phi-hat is in the field ‘covphi’.

References

Pollock, K. H., Nichols, J. D., Brownie, C. and Hines, J. E. (1990) Statistical inference for capture–
recapture experiments. Wildlife Monographs 107. 97pp.

See Also

JS.counts

Examples

cf Pollock et al. (1990) Table 4.8
JS.direct(microtusCH)

LLsurface Plot Likelihood Surface

Description

Calculate log likelihood over a grid of values of two beta parameters from a fitted openCR model
and optionally make an approximate contour plot of the log likelihood surface.

This is a method for the generic function LLsurface defined in secr.

LLsurface 29

Usage

S3 method for class 'openCR'
LLsurface(object, betapar = c("phi", "sigma"), xval = NULL, yval = NULL,
centre = NULL, realscale = TRUE, plot = TRUE, plotfitted = TRUE, ncores = NULL, ...)

Arguments

object openCR object output from openCR.fit

betapar character vector giving the names of two beta parameters

xval vector of numeric values for x-dimension of grid

yval vector of numeric values for y-dimension of grid

centre vector of central values for all beta parameters

realscale logical. If TRUE input and output of x and y is on the untransformed (inverse-
link) scale.

plot logical. If TRUE a contour plot is produced

plotfitted logical. If TRUE the MLE from object is shown on the plot (+)

ncores integer number of cores available for parallel processing

... other arguments passed to contour

Details

centre is set by default to the fitted values of the beta parameters in object. This has the effect of
holding parameters other than those in betapar at their fitted values.

If xval or yval is not provided then 11 values are set at equal spacing between 0.8 and 1.2 times
the values in centre (on the ‘real’ scale if realscale = TRUE and on the ‘beta’ scale otherwise).

Contour plots may be customized by passing graphical parameters through the . . . argument.

The value of ncores is passed to openCR.fit.

Value

Invisibly returns a matrix of the log likelihood evaluated at each grid point

Note

LLsurface.openCR works for named ‘beta’ parameters rather than ‘real’ parameters. The default
realscale = TRUE only works for beta parameters that share the name of the real parameter to
which they relate i.e. the beta parameter for the base level of the real parameter. This is because
link functions are defined for real parameters not beta parameters.

Handling of multiple threads was changed in version 1.5.0 to align with LLsurface.secr.

The contours are approximate because they rely on interpolation.

See Also

LLsurface.secr

30 make.kernel

Examples

not yet

make.kernel Discrete Movement Kernel

Description

Functions to create, plot and summarise a discrete representation of a movement kernel.

Usage

make.kernel(movementmodel = c("BVN", "BVE", "BVC", "BVT","RDE", "RDG", "RDL", "UNI"),
kernelradius = 10, spacing, move.a, move.b,
sparsekernel = FALSE, clip = FALSE, normalize = TRUE,
stat = c('estimate','lcl', 'ucl'), session = 1, r0 = 1/sqrt(pi), ...)

S3 method for class 'kernel'
plot(x, type = "kernel", contour = FALSE, levels = NULL, text = FALSE,

title = NULL, add = FALSE, xscale = 1, ...)

S3 method for class 'kernel'
summary(object, ...)

Arguments

movementmodel character or function or openCR object

kernelradius integer radius of kernel in grid cells

spacing numeric spacing between cell centres

move.a numeric parameter of kernel

move.b numeric parameter of kernel

sparsekernel logical; if TRUE then only cardinal and intercardinal axes are included

clip logical; if TRUE then corner cells are removed

normalize logical; if TRUE then cell values are divided by their sum

stat character; predicted statistic to use for move.a (openCR object only)

session integer; session for move.a, move.b if input is fitted model

r0 numeric; effective radius of zero cell for movement models

x kernel object from make.kernel

type character; plot style (see Details)

contour logical; if TRUE then contour lines are overlaid on any plot

levels numeric vector of contour levels

make.kernel 31

text logical; if TRUE then cell probabilities are overprinted, rounded to 3 d.p.

title character; if NULL a title is constructed automatically

add logical; if TRUE a line is added to an existing plot (types "gr", "fr", "Fr")

xscale numeric multiplier for distance axis (0.001 for distances in km)

... other arguments passed to predict.openCR (make.kernel) or plot.mask (plot
type "kernel") or lines (plot types "gr", "fr", "Fr") (not used by summary
method)

object kernel object from make.kernel

Details

A kernel object is a type of mask with cell probabilities stored in the covariate ‘kernelp’. All kernels
are truncated at kernelradius x spacing.

The movementmodel may also be a function or a previously fitted openCR model that includes
movement. If a fitted openCR object, parameter values and kernel attributes are derived from that
object and other arguments are ignored.

The parameter ‘move.a’ is a scale parameter in metres, except for the UNIzi and INDzi models for
which it is the zero-inflation parameter (‘move.b’ is the zero-inflation parameter for BVNzi, BVEzi
and RDEzi).

’Sparse’ kernels include only those grid cells that lie on 4 axes (N-S, E-W, NW-SE, NE-SW);
cell probabilities are adjusted to maintain nearly the same distance distribution as the non-sparse
equivalents.

Movement models are listed in Movement models and further described in the vignettes openCR-
vignette.pdf.

Plot type may be one or more of –

‘kernel’ coloured 2-D depiction
‘gr’ cross-section through the origin of g(r) (the 2-D kernel)
‘fr’ continuous probability density f(r)
‘Fr’ cumulative probability distribution F (r)

Type “kernel" by default includes an informative title with font size from the graphical parameter
‘cex.main’. Set title = "" to suppress the title.

Useful properties of theoretical (not discretized) kernels may be recovered with matchscale, pkernel,
dkernel and qkernel.

The obscure argument r0 controls the value assigned to the central cell of a discretized kernel.
For positive r0 the value is F(r0*cellsize), where F is the cumulative probability distribution of
distance moved. Otherwise the cell is assigned the value g(0)*cellarea, where g() is the 2-D kernel
probability density (this fails where g(0) is undefined or infinite).

32 make.kernel

Value

make.kernel returns an object of class c(’kernel’,’mask’,’data.frame’).

The kernel object has attributes:

Attribute Description
movementmodel saved input
K2 saved kernelradius
move.a saved input
move.b saved input
distribution empirical cumulative distribution function

The empirical cumulative distribution is a dataframe with columns for the sorted cell radii ‘r’ and
the associated cumulative probability ‘cumprob’ (one row per cell).

summary.kernel returns an object with these components, displayed with the corresponding print
method.

Component Description
k2 kernel radius in mask cells
spacing cell width
ncells number of cells in kernel
movementmodel movement model code
move.a first (scale) parameter
move.b second (shape) parameter
mu mean of logs (RDL only; from move.a)
s SD of logs (RDL only; from move.b)
expectedmove mean movement (untruncated)
expectedmovetr mean movement (trucated at kernel radius)
expectedmoveemp mean computed directly from kernel cell values as sum(r.p)
ptruncated proportion of theoretical distribution truncated at radius
expectedq50 theoretical (untruncated) median
expectedq90 theoretical (untruncated) 90th percentile
expectedq50tr theoretical truncated median
expectedq90tr theoretical truncated 90th percentile

The empirical mean in expectedmoveemp is usually the most pertinent property of a fitted kernel.

Note

The plot method for kernels supercedes the function plotKernel that has been removed.

References

Clark, J. S, Silman, M., Kern, R., Macklin, E. and HilleRisLambers, J. (1999) Seed dispersal near
and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494.

make.table 33

Efford, M. G. and Schofield, M. R. (2022) A review of movement models in open population
capture–recapture. Methods in Ecology and Evolution 13, 2106–2118. https://doi.org/10.1111/2041-
210X.13947

Ergon, T. and Gardner, B. (2014) Separating mortality and emigration: modelling space use, dis-
persal and survival with robust-design spatial capture–recapture data. Methods in Ecology and
Evolution 5, 1327–1336.

Nathan, R., Klein, E., Robledo-Arnuncio, J. J. and Revilla, E. (2012) Dispersal kernels: review. In:
J. Clobert et al. (eds) Dispersal Ecology and Evolution. Oxford University Press. Pp. 187–210.

See Also

Movement models, mask, matchscale, dkernel, pkernel, qkernel

Examples

k <- make.kernel(movementmodel = 'BVT', spacing = 10, move.a = 20, move.b = 1)
summary(k)

read a previously fitted movement model packaged with 'openCR'
fit <- readRDS(system.file("exampledata", "spmOV.RDS", package = "openCR"))
k <- make.kernel(fit)
plot(k)
if (interactive()) {

spotHeight(k, dec = 3) # click on points; Esc to exit
}

make.table Tabulate Estimates From Multiple Models

Description

Session-specific estimates of real parameters (p, phi, etc.) are arranged in a rectangular table.

Usage

make.table(fits, parm = "phi", fields = "estimate", strata = 1,
collapse = FALSE, ...)

Arguments

fits openCRlist object

parm character name of real parameter estimate to tabulate

fields character column from predict (estimate, SE.estimate, lcl, ucl)

strata integer; indices of strata to report

collapse logical; if TRUE stratum-specific results are collapsed to single table

... arguments passed to predict.openCRlist

34 makeNewData

Details

The input will usually be from par.openCR.fit.

collate.openCR is a flexible alternative.

Value

A table object.

See Also

collate.openCR, par.openCR.fit, openCRlist

Examples

Not run:

arglist <- list(
constant = list(capthist = ovenCHp, model = phi~1),
session.specific = list(capthist = ovenCHp, model = phi~session)

)
fits <- par.openCR.fit(arglist, trace = FALSE)
print(make.table(fits), na = ".")

End(Not run)

makeNewData Create Default Design Data

Description

Internal function used to generate a dataframe containing design data for the base levels of all
predictors in an openCR object.

Usage

S3 method for class 'openCR'
makeNewData(object, all.levels = FALSE, ...)

Arguments

object fitted openCR model object

all.levels logical; if TRUE then all covariate factor levels appear in the output

... other arguments (not used)

matchscale 35

Details

makeNewData is used by predict in lieu of user-specified ‘newdata’. There is seldom any need to
call makeNewData directly.

makeNewData uses saved agelevels for grouping ages (openCR >= 2.2.6).

Value

A dataframe with one row for each session, and columns for the predictors used by object$model.

See Also

openCR.fit

Examples

Not run:

null example (no covariates)
ovenCJS <- openCR.fit(ovenCH)
makeNewData(ovenCJS)

End(Not run)

matchscale Match Kernel

Description

Finds scale parameter (move.a) of a movement model that corresponds to desired quantile, or ex-
pected distance moved.

Usage

matchscale(movementmodel, q = 40, expected = NULL, p = 0.5, lower = 1e-05, upper = 1e+05,
move.b = 1, truncate = Inf)

Arguments

movementmodel character (see Movement models and openCR-vignettes.pdf)

q desired quantile (distance moved)

expected numeric expected distance moved

p cumulative probability

move.b shape parameter of movement kernel

36 Microtus

lower lower bound interval to search

upper upper bound interval to search

truncate numeric q value at which distribution truncated

Details

The default behaviour is to find the movement parameter for the given combination of q and p.

The alternative, when a value is provided for ‘expected’, is to find the movement parameter corre-
sponding to the given expected distance.

The truncate argument must be specified for movementmodel ‘UNIzi‘. For movementmodel
‘UNI’ there is no parameter and the radius of truncation is varied to achieve the requested quantile
q corresponding to cumulative probability p, or the desired expected distance.

Value

Numeric value for move.a (scale parameter or zero-inflation in the case of ‘UNIzi’) or truncation
radius (‘UNI’).

See Also

Movement models, pkernel, make.kernel, expected.d

Examples

matchscale('BVN', 40, 0.5)
matchscale('BVT', 40, 0.5, move.b = 1)
matchscale('BVT', 40, 0.5, move.b = 5)
matchscale('BVT', move.b = 5, expected = 10)

Microtus Patuxent Meadow Voles

Description

Captures of Microtus pennsylvanicus at Patuxent Wildlife Research Center, Laurel, Maryland,
June–December 1981. Collapsed (primary session only) data for adult males and adult females,
and full robust-design data for adult males. Nichols et al. (1984) described the field methods and
analysed a superset of the present data.

Usage

microtusCH
microtusFCH
microtusMCH
microtusFMCH
microtusRDCH

Microtus 37

Format

The format is a single-session secr capthist object. As these are non-spatial data, the traps attribute
is NULL.

Details

Voles were caught in live traps on a 10 x 10 grid with traps 7.6 m apart. Traps were baited with
corn. Traps were set in the evening, checked the following morning, and locked open during the
day. Voles were ear-tagged with individually numbered fingerling tags. The locations of captures
were not included in the published data.

Data collection followed Pollock’s robust design with five consecutive days of trapping each month
for six months (27 June 1981–8 December 1981). The data are for "adult" animals only, defined
as those weighing at least 22g. Low capture numbers on the last two days of the second primary
session (occasions 9 and 10) are due to a raccoon interfering with traps (Nichols et al. 1984). Six
adult female voles and ten adult male voles were not released; their final captures are coded as -1 in
the respective capthist objects.

microtusRDCH is the full robust-design dataset for adult males ((Williams et al. 2002 Table 19.1).

microtusFCH and microtusMCH are the collapsed datasets (binary at the level of primary session)
for adult females and adult males from Williams et al. (2002 Table 17.5); microtusFMCH combines
them and includes the covariate ‘sex’.

microtusCH is a combined-sex version of the data with different lineage (see below).

The ‘intervals’ attribute was assigned for microtusRDCH to distinguish primary sesssions (interval
1 between prmary sessions; interval 0 for consecutive secondary sessions within a primary session).
True intervals (start of one primary session to start of next) were 35, 28, 35, 28 and 34 days. See
Examples to add these manually.

Williams, Nichols and Conroy (2002) presented several analyses of these data.

Program JOLLY (Hines 1988, Pollock et al. 1990) included a combined-sex version of the primary-
session data that was used by Pollock et al. (1985) and Pollock et al. (1990)*. The numbers of voles
released each month in the JOLLY dataset JLYEXMPL differ by 0–3 from the sum of the male and
female data from Williams et al. (2002) (see Examples). Some discrepancies may have been due to
voles for which sex was not recorded. The JOLLY version matches Table 1 of Nichols et al. (1984).
The JOLLY version is distributed here as the object microtusCH.

Differing selections of data from the Patuxent study were analysed by Nichols et al. (1992) and
Bonner and Schwarz (2006).

* There is a typographic error in Table 4.7 of Pollock et al. (1990): ri for the first period should be
89.

Source

Object Source
microtusCH Text file JLYEXMPL distributed with Program JOLLY (Hines 1988; see also Examples)
microtusFCH Table 17.5 in Williams, Nichols and Conroy (2002)
microtusMCH Table 17.5 in Williams, Nichols and Conroy (2002)
microtusFMCH Table 17.5 in Williams, Nichols and Conroy (2002)
microtusRDCH Table 19.1 in Williams, Nichols and Conroy (2002) provided as text file by Jim Hines

38 Microtus

References

Bonner, S. J. and Schwarz, C. J. (2006) An extension of the Cormack–Jolly–Seber model for con-
tinuous covariates with application to Microtus pennsylvanicus. Biometrics 62, 142–149.

Hines, J. E. (1988) Program "JOLLY". Patuxent Wildlife Research Center. https://eesc.usgs.
gov/mbr/software/jolly.shtml

Nichols, J. D., Pollock, K. H., Hines, J. E. (1984) The use of a robust capture-recapture design in
small mammal population studies: a field example with Microtus pennsylvanicus. Acta Theriolog-
ica 29, 357–365.

Nichols, J. D., Sauer, J. R., Pollock, K. H., and Hestbeck, J. B. (1992) Estimating transition prob-
abilities for stage-based population projection matrices using capture–recapture data. Ecology 73,
306–312.

Pollock, K. H., Hines, J. E. and Nichols, J. D. (1985) Goodness-of-fit tests for open capture–
recapture models. Biometrics 41, 399–410.

Pollock, K. H., Nichols, J. D., Brownie, C. and Hines, J. E. (1990) Statistical inference for capture–
recapture experiments. Wildlife Monographs 107. 97pp.

Williams, B. K., Nichols, J. D. and Conroy, M. J. (2002) Analysis and management of animal
populations. Academic Press.

Examples

cf Williams, Nichols and Conroy Table 17.6
m.array(microtusFCH)
m.array(microtusMCH)

Not run:

cf Williams, Nichols and Conroy Fig. 17.2
fitfm <- openCR.fit(microtusFMCH, model = list(p~1, phi ~ session + sex))
maledat <- expand.grid(sex = factor('M', levels = c('F','M')), session = factor(1:6))
plot(fitfm, ylim=c(0,1), type = 'o')
plot(fitfm, newdata = maledat, add = TRUE, xoffset = 0.1, pch = 16, type = 'o')

adjusting for variable interval
intervals(microtusCH) <- c(35,28,35,28,34) / 30
intervals(microtusRDCH)[intervals(microtusRDCH)>0] <- c(35,28,35,28,34) / 30

The text file JLYEXMPL distributed with JOLLY is in the extdata folder of the R package
The microtusCH object may be rebuilt as follows
datadir <- system.file('extdata', package = 'openCR')
JLYdf <- read.table(paste0(datadir,'/JLYEXMPL'), skip = 3,

colClasses = c('character','numeric'))
names(JLYdf) <- c('ch', 'freq')
JLYdf$freq[grepl('2', JLYdf$ch)] <- -JLYdf$freq[grepl('2', JLYdf$ch)]

https://eesc.usgs.gov/mbr/software/jolly.shtml
https://eesc.usgs.gov/mbr/software/jolly.shtml

miscellaneous 39

JLYdf$ch <- gsub ('2','1', JLYdf$ch)
microtusCH <- unRMarkInput(JLYdf)

Compare to combined-sex data from Williams et al. Table 17.5
JS.counts(microtusCH) - JS.counts(microtusFMCH)

End(Not run)

miscellaneous Data Manipulation

Description

Miscellaneous functions

Usage

primarysessions(intervals)
secondarysessions(intervals)

Arguments

intervals numeric vector of intervals for time between secondary sessions a of robust de-
sign

Details

These functions are used internally.

Value

primarysessions –
Integer vector with the number of the primary session to which each secondary session belongs.
secondarysessions –
Integer vector with secondary sessions numbered sequentially within primary sessions.

Examples

int <- intervals(join(ovenCH))
primary <- primarysessions(int)
primary

number of secondary sessions per primary
table(primary)

secondary session numbers
secondarysessions(int)

40 modelAverage

modelAverage Averaging of OpenCR Models Using Akaike’s Information Criterion

Description

AIC- or AICc-weighted average of estimated ‘real’ or ‘beta’ parameters from multiple fitted openCR
models.

The modelAverage generic is imported from secr (>= 4.5.0).

Usage

S3 method for class 'openCR'
modelAverage(object, ..., realnames = NULL, betanames = NULL,

newdata = NULL, alpha = 0.05, dmax = 10, covar = FALSE, average = c("link",
"real"), criterion = c("AIC","AICc"), CImethod = c("Wald", "MATA"))

S3 method for class 'openCRlist'
modelAverage(object, ..., realnames = NULL, betanames = NULL,

newdata = NULL, alpha = 0.05, dmax = 10, covar = FALSE, average = c("link",
"real"), criterion = c("AIC","AICc"), CImethod = c("Wald", "MATA"))

Arguments

object openCR or openCRlist objects

... other openCR objects (modelAverage.openCR() only)

realnames character vector of real parameter names

betanames character vector of beta parameter names

newdata optional dataframe of values at which to evaluate models

alpha alpha level for confidence intervals

dmax numeric, the maximum AIC or AICc difference for inclusion in confidence set

covar logical, if TRUE then return variance-covariance matrix

average character string for scale on which to average real parameters

criterion character, information criterion to use for model weights

CImethod character, type of confidence interval (see Details)

Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional). If realnames = NULL and betanames = NULL then all real parameters will
be averaged; in this case all models must use the same real parameters. To average beta parameters,
specify betanames (this is ignored if a value is provided for realnames). See predict.openCR
for an explanation of the optional argument newdata; newdata is ignored when averaging beta
parameters.

modelAverage 41

Model-averaged estimates for parameter θ are given by

θ̂ =
∑
k

wkθ̂k

where the subscript k refers to a specific model and the wk are AIC or AICc weights (see AIC.openCR
for details). Averaging of real parameters may be done on the link scale before back-transformation
(average="link") or after back-transformation (average="real").

Models for which dAIC > dmax (or dAICc > dmax) are given a weight of zero and effectively are
excluded from averaging.

Also,
var(θ̂) =

∑
k

wk(var(θ̂k|βk) + β2
k)

where β̂k = θ̂k − θ̂ and the variances are asymptotic estimates from fitting each model k. This
follows Burnham and Anderson (2004) rather than Buckland et al. (1997).

Two methods are offered for confidence intervals. The default ‘Wald’ uses the above estimate of
variance. The alternative ‘MATA’ (model-averaged tail area) avoids estimating a weighted vari-
ance and is thought to provide better coverage at little cost in increased interval length (Turek and
Fletcher 2012). Turek and Fletcher (2012) also found averaging with AIC weights (here criterion
= 'AIC') preferable to using AICc weights, even for small samples. CImethod does not affect the
reported standard errors.

Value

A list (one component per parameter) of model-averaged estimates, their standard errors, and a
100(1−α)% confidence interval. The interval for real parameters is backtransformed from the link
scale. If there is only one row in newdata or beta parameters are averaged or averaging is requested
for only one parameter then the array is collapsed to a matrix. If covar = TRUE then a list is returned
with separate components for the estimates and the variance-covariance matrices.

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Burnham, K. P. and Anderson, D. R. (2004) Multimodel inference - understanding AIC and BIC in
model selection. Sociological Methods & Research 33, 261–304.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-
tics and data analysis 56, 2809–2815.

See Also

AIC.openCR, make.table, openCR.fit, openCRlist

42 Movement models

Examples

Compare two models fitted previously

cjs1 <- openCR.fit(dipperCH, model=p~1)
cjs2 <- openCR.fit(dipperCH, model=p~session)
AIC(cjs1, cjs2)
modelAverage(cjs1, cjs2)

or
cjs12 <- openCRlist(cjs1, cjs2)
modelAverage(cjs12)

Movement models List of Movement Models

Description

Movement of activity centres between primary sessions is modelled in openCR as a random walk
with step length governed by a circular probability kernel. The argument ‘movementmodel’ defines
the kernel in several functions. More detail is provided in the vignettes openCR-vignette.pdf.

Movement models in openCR 2.2

Kernel models:

Kernel Description Parameters
BVN bivariate normal move.a
BVE bivariate Laplace move.a
BVC bivariate Cauchy distribution move.a
BVT bivariate t-distribution (2Dt of Clark et al. 1999) move.a, move.b
RDE exponential distribution of distance moved cf Ergon and Gardner (2014) move.a
RDG gamma distribution of distance moved cf Ergon and Gardner (2014) move.a, move,b
RDL log-normal distribution of distance moved cf Ergon and Gardner (2014) move.a, move.b
RDLS* log-sech distribution of distance moved (Van Houtan et al. 2007) move.a, move.b
UNI uniform within kernel radius, zero outside (none)
BVNzi zero-inflated BVN move.a, move.b
BVEzi zero-inflated BVE move.a, move.b
RDEzi zero-inflated RDE move.a, move.b
UNIzi zero-inflated UNI move.a

* incomplete implementation

Kernel-free models (buffer dependent):

Model Description Parameters

Movement models 43

IND independent relocation within habitat mask (Gardner et al. 2018) (none)
INDzi zero-inflated IND move.a

Relationships among models

Some models may be derived as special cases of others, for example

General Condition Equivalent to
BVT large move.b (df ∞) BVN
BVT move.b = 0.5 (df 1) BVC
RDG move.b = 1 RDE
RDG move.b = 2 BVE
BVNzi large move.a UNIzi

RDL and RDG are almost indistinguishable when move.b > 2.

Deprecated names of movement models

These old names appeared in earlier releases. They still work, but may be removed in future.

Old New
normal BVN
exponential BVE
t2D BVT
frE RDE
frG RDG
frL RDL
uniform UNI
frEzi RDEzi
uniformzi UNIzi

Additional movement models that may be removed without notice

Kernel Description Parameters
annular non-zero only at centre and edge cells (after clipping at kernelradius) move.a
annularR non-zero only at centre and a ring of cells at radius R move.a, move.b

“annularR” uses a variable radius (R = move.b x kernelradius x spacing) and weights each cell
according to the length of arc it intersects; “annularR” is not currently allowed in openCR.fit. For
the ‘annular’ models ’move.a’ is the proportion at the centre (probability of not moving).

44 moving.fit

References

Clark, J. S, Silman, M., Kern, R., Macklin, E. and HilleRisLambers, J. (1999) Seed dispersal near
and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494.

Efford, M. G. and Schofield, M. R. (2022) A review of movement models in open population
capture–recapture. Methods in Ecology and Evolution 13, 2106–2118. https://doi.org/10.1111/2041-
210X.13947

Ergon, T. and Gardner, B. (2014) Separating mortality and emigration: modelling space use, dis-
persal and survival with robust-design spatial capture–recapture data. Methods in Ecology and
Evolution 5, 1327–1336.

Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. and Karanth, K. U. (2018) State space
and movement specification in open population spatial capture–recapture models. Ecology and
Evolution 8, 10336–10344 doi:10.1002/ece3.4509.

Nathan, R., Klein, E., Robledo-Arnuncio, J. J. and Revilla, E. (2012) Dispersal kernels: review. In:
J. Clobert et al. (eds) Dispersal Ecology and Evolution. Oxford University Press. Pp. 187–210.

Van Houtan, K. S., Pimm, S. L., Halley, J. M., Bierregaard, R. O. Jr and Lovejoy, T. E. (2007)
Dispersal of Amazonian birds in continuous and fragmented forest. Ecology Letters 10, 219–229.

See Also

make.kernel, gkernel, dkernel, pkernel, qkernel, openCR.fit

moving.fit Moving Window Functions

Description

Apply a function to successive multi-session windows from a capthist object. The default function
is openCR.fit, but any function may be used whose first argument accepts a capthist object.

Usage

moving.fit (..., width = 3, centres = NULL, filestem = NULL,
trace = FALSE, FUN = openCR.fit)

extractFocal (ocrlist, ...)

Arguments

... named arguments passed to openCR.fit (see Details)

width integer; moving window width (number of primary sessions)

centres integer; central sessions of windows to consider

filestem character or NULL; stem used to form filenames for optional intermediate out-
put

https://doi.org/10.1002/ece3.4509

moving.fit 45

trace logical; if TRUE a status message is given at each call of FUN
FUN function to be applied to successive capthist objects
ocrlist openCRlist object returned by moving.fit when FUN = openCR.fit

Details

moving.fit applies FUN to successive multi-session subsets of the data in the capthist argument.
width should be an odd integer. centres may be used to restrict the range of windows considered;
the default is to use all complete windows (width%/%2 + 1)...).

If a filestem is specified then each result is output to a file that may be loaded with load. This is
useful if fitting takes a long time and analyses may be terminated before completion.

extractFocal returns the focal-session (central) estimates from a moving.fit with FUN = openCR.fit.
The . . . argument is passed to predict.openCR; it may be used, for example, to choose a different
alpha level for confidence intervals.

extractFocal is untested for complex models (e.g. finite mixtures).

Value

A list in which each component is the output from FUN applied to one subset. The window width
is saved as attribute ‘width’.

See Also

openCR.fit

Examples

number of individuals detected
moving.fit(capthist = OVpossumCH, FUN = nrow)

Not run:

if package R2ucare installed
if (requireNamespace("R2ucare"))

moving.fit(capthist = OVpossumCH, FUN = ucare.cjs, width = 5, tests = "overall_CJS")

using default FUN = openCR.fit

mf1 <- moving.fit(capthist = OVpossumCH, type = 'JSSAfCL',
model = list(p~t, phi~t))

lapply(mf1, predict)
extractFocal(mf1)

msk <- make.mask(traps(OVpossumCH[[1]]), nx = 32)
mf2 <- moving.fit(capthist = OVpossumCH, mask = msk, type = 'JSSAsecrfCL')
extractFocal(mf2)

End(Not run)

46 openCR-deprecated

openCR-defunct Defunct Functions in Package openCR

Description

These functions are no longer available in openCR.

Usage

Defunct in 2.1.0

openCR.make.newdata()

Defunct in 2.0.0

plotKernel()

Details

Internal function openCR.make.newdata was replaced with a method for the openCR class of the
generic makeNewData.

plotKernel was replaced with a plot method for the kernel class.

See Also

openCR-deprecated

openCR-deprecated Deprecated Functions in Package openCR

Description

These functions will be removed from future versions of openCR.

Usage

Deprecated in 2.2.6

None

See Also

openCR-defunct

openCR.design 47

openCR.design Design Data for Open population Models

Description

Internal function used by openCR.fit.

Usage

openCR.design(capthist, models, type, naive = FALSE, stratumcov = NULL,
sessioncov = NULL, timecov = NULL, agecov = NULL,
dframe = NULL, contrasts = NULL, initialage = 0,
minimumage = 0, maximumage = 1, agebreaks = NULL, CJSp1 = FALSE, ...)

Arguments

capthist single-session capthist object

models list of formulae for parameters of detection

type character string for type of analysis "CJS", "JSSAfCL" etc. (see openCR.fit)

naive logical if TRUE then modelled parameter is for a naive animal (not caught pre-
viously)

timecov optional vector or dataframe of values of occasion-specific covariate(s).

stratumcov optional dataframe of values of stratum-specific covariate(s)

sessioncov optional dataframe of values of session-specific covariate(s)

agecov optional dataframe of values of age-specific covariate(s)

dframe optional data frame of design data for detection parameters

contrasts contrast specification as for model.matrix

initialage numeric or character (name of individual covariate containing initial ages)

minimumage numeric; ages younger than minimum are truncated up

maximumage numeric; ages older than maximum are truncated down

agebreaks numeric vector of age-class limits

CJSp1 logical; if TRUE detection is modelled on first primary session in CJS models

... other arguments passed to the R function model.matrix

Details

This is an internal openCR function that you are unlikely ever to use. . . . may be used to pass
contrasts.arg to model.matrix.

Each real parameter is notionally different for each unique combination of individual, secondary
session, detector and latent class, i.e., for n individuals, S secondary sessions, K detectors and m
latent classes there are potentially n× S ×K ×m different values. Actual models always predict

48 openCR.design

a much reduced set of distinct values, and the number of rows in the design matrix is reduced cor-
respondingly; a parameter index array allows these to retrieved for any combination of individual,
session and detector.

openCR.design is less tolerant than openCR.fit regarding the inputs ‘capthist’ and ‘models’.
Model formulae are processed by openCR.fit to a standard form (a named list of formulae) before
they are passed to openCR.design, and multi-session capthist objects are automatically ‘reduced’
and ‘joined’ for open-population analysis.

If timecov is a single vector of values (one for each secondary session) then it is treated as a
covariate named ‘tcov’. If sessioncov is a single vector of values (one for each primary session)
then it is treated as a covariate named ‘scov’.

The initialage and maximumage arguments are usually passed via the openCR.fit ‘details’ argu-
ment.

agecov may be used to group ages. It should have length (or number of rows) equal to maximumage
+ 1. Alternatively, age classes may be defined with the argument agebreaks; this is preferred from
openCR 2.2.6.

Value

A list with the components

designMatrices list of reduced design matrices, one for each real parameter

parameterTable index to row of the reduced design matrix for each real parameter; dim(parameterTable)
= c(uniquepar, np), where uniquepar is the number of unique combinations of
paramater values (uniquepar < nSKM) and np is the number of parameters in
the detection model.

PIA Parameter Index Array - index to row of parameterTable for a given animal,
occasion and latent class; dim(PIA) = c(n,S,K,M)

validlevels for J primary sessions, a logical matrix of np rows and J columns, mostly TRUE,
but FALSE for impossible combinations e.g. CJS recapture probability in ses-
sion 1 (validlevels["p",1]) unless CJSp1 = TRUE, or CJS final survival probability
(validlevels["phi",J]). Also, validlevels["b",1] is FALSE with type = "JSSA..."
because of the constraint that entry parameters sum to one.

individual TRUE if uses individual variate(s)

agelevels levels for age factor (cut numeric ages) if ‘age’ in model

Note

The component validlevels is TRUE in many cases for which a parameter is redundant or con-
founded (e.g. validlevels["phi",J-1]); these are sorted out ‘post hoc’ by examining the fitted values,
their asymptotic variances and the eigenvalues of the Hessian matrix.

See Also

openCR.fit

openCR.fit 49

Examples

this happens automatically in openCR.fit
ovenCH1 <- join(reduce(ovenCH, by = "all", newtraps=list(1:44)))

openCR.design (ovenCH1, models = list(p = ~1, phi = ~session),
interval = c(1,1,1,1), type = "CJS")

openCR.fit Fit Open Population Capture–Recapture Model

Description

Nonspatial or spatial open-population analyses are performed on data formatted for ‘secr’. Several
parameterisations are provided for the nonspatial Jolly-Seber Schwarz-Arnason model (‘JSSA’, also
known as ‘POPAN’). Corresponding spatial models are designated ‘JSSAsecr’. The prefix ‘PLB’
(Pradel-Link-Barker) is used for versions of the JSSA models that are conditional on the number
observed. Cormack-Jolly-Seber (CJS) models are also fitted.

Usage

openCR.fit (capthist, type = "CJS", model = list(p~1, phi~1, sigma~1),
distribution = c("poisson", "binomial"), mask = NULL,
detectfn = c("HHN", "HHR", "HEX", "HAN", "HCG", "HVP", "HPX"), binomN = 0,

movementmodel = c('static', 'BVN', 'BVE', 'BVT', 'RDE', 'RDG','RDL','IND', 'UNI',
'BVNzi', 'BVEzi', 'RDEzi', 'INDzi', 'UNIzi'), edgemethod =

c("truncate", "wrap", "none"), kernelradius = 30, sparsekernel = TRUE,
start = NULL, link = list(), fixed = list(), stratumcov = NULL,
sessioncov = NULL, timecov = NULL, agecov = NULL, dframe = NULL,
dframe0 = NULL, details = list(), method = "Newton-Raphson", trace = NULL,
ncores = NULL, stratified = FALSE, ...)

Arguments

capthist capthist object from ‘secr’

type character string for type of analysis (see Details)

model list with optional components, each symbolically defining a linear predictor for
the relevant real parameter using formula notation. See Details for names of
real parameters.

distribution character distribution of number of individuals detected

mask single-session mask object; required for spatial (secr) models

detectfn character code

binomN integer code for distribution of counts (see secr.fit)

movementmodel character; model for movement between primary sessions (see Details)

edgemethod character; method for movement at edge of mask (see Details)

50 openCR.fit

kernelradius integer; radius in mask cells of discretized kernel (movement models only)

sparsekernel logical; if TRUE then only cardinal and intercardinal axes are included

start vector of initial values for beta parameters, or fitted model(s) from which they
may be derived

link list with named components, each a character string in {"log", "logit", "loglog",
"identity", "sin", "mlogit"} for the link function of the relevant real parameter

fixed list with optional components corresponding to each ‘real’ parameter, the scalar
value to which parameter is to be fixed

stratumcov optional dataframe of values of stratum-specific covariate(s).

sessioncov optional dataframe of values of session-specific covariate(s).

timecov optional dataframe of values of occasion-specific covariate(s).

agecov optional dataframe of values of age-specific covariate(s)

dframe optional data frame of design data for detection parameters (seldom used)

dframe0 optional data frame of design data for detection parameters of naive (undetected)
animals (seldom used)

details list of additional settings (see Details)

method character string giving method for maximizing log likelihood

trace logical or integer; output log likelihood at each evaluation, or at some lesser
frequency as given

ncores integer number of cores for parallel processing (see Details)

stratified logical; if TRUE then sessions of capthist interpreted as indpendent strata

... other arguments passed to join()

Details

The permitted nonspatial models are CJS, Pradel, Pradelg, JSSAbCL = PLBb, JSSAfCL = PLBf,
JSSAgCL = PLBg, JSSAlCL = PLBl, JSSAb, JSSAf, JSSAg, JSSAl, JSSAB and JSSAN.

The permitted spatial models are CJSsecr, JSSAsecrbCL = PLBsecrb, JSSAsecrfCL = PLBsecrf,
JSSAsecrgCL = PLBsecrg, JSSAsecrlCL = PLBsecrl, JSSAsecrb, JSSAsecrf, JSSAsecrg, JSSAse-
crl, JSSAsecrB, JSSAsecrN, secrCL, and secrD.

See openCR-vignette.pdf for a table of the ‘real’ parameters associated with each model type.

Parameterisations of the JSSA models differ in how they include recruitment: the core parameterisa-
tions express recruitment either as a per capita rate (‘f’), as a finite rate of increase for the population
(‘l’ for lambda) or as per-occasion entry probability (‘b’ for the classic JSSA beta parameter, aka
PENT in MARK). Each of these models may be fitted by maximising either the full likelihood, or
the likelihood conditional on capture in the Huggins (1989) sense, distinguished by the suffix ‘CL’.
Full-likelihood JSSA models may also be parameterized in terms of the time-specific absolute re-
cruitment (BN, BD) or the time-specific population size(N) or density (D).

‘secrCL’ and ‘secrD’ are closed-population spatial models.

Data are provided as secr ‘capthist’ objects, with some restrictions. For nonspatial analyses,
‘capthist’ may be single-session or multi-session, with any of the main detector types. For spatial
analyses ‘capthist’ should be a single-session dataset of a point detector type (‘multi’, ‘proximity’ or

openCR.fit 51

‘count’) (see also details$distribution below). In openCR the occasions of a single-session dataset
are treated as open-population temporal samples except that occasions separated by an interval of
zero (0) are from the same primary session (multi-session input is collapsed to single-session if
necessary).

model formulae may include the pre-defined terms ‘session’,‘Session’, ‘h2’, and ‘h3’ as in secr.
‘session’ is the name given to primary sampling times in ‘secr’, so a fully time-specific CJS model
is list(p ~ session, phi ~ session). ‘t’ is a synonym of ‘session’. ‘Session’ is for a trend over
sessions. ‘h2’ and ‘h3’ allow finite mixture models.

Learned (behavioural) responses (‘b’, ‘B’, etc.) were redefined and extended in version 1.3.0. The
vignette should be consulted for current definitions.

Formulae may also include named occasion-specific and session-specific covariates in the dataframe
arguments ‘timecov’ and ‘sessioncov’ (occasion = secondary session of robust design). Named age-
specific covariates in ’agecov‘ are treated similarly. Individual covariates present as an attribute of
the ‘capthist’ input may be used in CJS and ..CL models. Groups are not supported in this version,
but may be implemented via a factor-level covariate in ..CL models.

distribution specifies the distribution of the number of individuals detected; this may be condi-
tional on the population size (or number in the masked area) ("binomial") or unconditional ("pois-
son"). distribution affects the sampling variance of the estimated density. The default is "pois-
son" as in secr.

Movement models are list at Movement models. Their use is described in the vignette.

edgemethod controls movement probabilities at the mask edge in spatial models that include move-
ment. "none" typically causes bias in estimates; "wrap" wraps kernel probabilities to the opposing
edge of a rectangular mask; "truncate" scales the values of an edge-truncated kernel so that they
always sum to 1.0 (safer and more general than "wrap").

The mlogit link function is used for the JSSA (POPAN) entry parameter ‘b’ (PENT in MARK) and
for mixture proportions, regardless of link.

Spatial models use one of the hazard-based detection functions (see detectfn) and require data
from independent point detectors (secr detector types ‘multi’, ‘proximity’ or ‘count’).

Code is executed in multiple threads unless the user specifies ncores = 1 or there is only one core
available or details$R == TRUE. Setting ncores = NULL uses the existing value from the environ-
ment variable RCPP_PARALLEL_NUM_THREADS (see setNumThreads) or 2 if that has not
been set.

Optional stratification was introduced in openCR 2.0.0. See openCR-vignette.pdf for details.

The . . . argument may be used to pass a vector of unequal intervals to join (interval), or to vary
the tolerance for merging detector sites (tol).

The start argument may be

- a vector of beta parameter values, one for each of the NP beta parameters in the model

- a named vector of beta parameter values in any order

- a named list of one or more real parameter values

- a single fitted secr or openCR model whose real parameters overlap with the current model

- a list of two fitted models

52 openCR.fit

In the case of two fitted models, the values are melded. This is handy for initialising an open spatial
model from a closed spatial model and an open non-spatial model. If a beta parameter appears in
both models then the first is used.

details is a list used for various specialized settings –

Component Default Description
agebreaks minimumage:maximumage Limits of age classes (vector passed to cut)
autoini 1 Number of the session used to determine initial values of D, lambda0 and sigma (secr types only)
CJSp1 FALSE Modified CJS model including initial detection (estimable with robust design and many spatial models)
contrasts NULL Value suitable for the ‘contrasts.arg’ argument of model.matrix used to specify the coding of factor predictors
control list() Components may be named arguments of nlm, or passed intact as argument ‘control’ of optim - useful for increasing maxit for method = Nelder-Mead (see vignette)
debug 0 debug=1 prints various intermediate values; debug>=2 interrupts execution by calling browser() (position variable)
fixedbeta NULL Vector with one element for each coefficient (beta parameter) in the model. Only ’NA’ coefficients will be estimated; others will be fixed at the value given (coefficients define a linear predictor on the link scale). The number and order of coefficients may be determined by calling openCR.fit with trace = TRUE and interrupting execution after the first likelihood evaluation.
grain 1 Obscure setting for multithreading - see RcppParallel package
hessian "auto" Computation of the Hessian matrix from which variances and covariances are obtained. Options are "none" (no variances), "auto" or "fdhess" (use the function fdHess in nlme). If "auto" then the Hessian from the optimisation function is used.
ignoreusage FALSE Overrides usage in traps object of capthist
initialage 0 Numeric (uniform age at first capture) or character value naming an individual covariate; see age.matrix
initialstratum 1 Number of stratum to use for finding default starting values (cf autoini in secr)
LLonly FALSE TRUE causes the function to return a single evaluation of the log likelihood at the initial values, followed by the initial values
minimumage 0 Sets a minimum age; see age.matrix
maximumage 1 Sets a maximum age; older animals are recycled into this age class; see age.matrix
multinom FALSE Include the multinomial constant in the reported log-likelihood.
r0 0.5 effective radius of zero cell in movement kernel (multiple of cell width)
R FALSE Switch from the default C++ code to slower functions in native R (useful for debugging; not all models)
squeeze TRUE Apply squeeze to capthist before analysis. Non-spatial models fit faster, because histories often non-unique.
userdist NULL Function to compute distances (see secr)
stepmax NULL stepmax argument of nlm (step on link scale)

If method = "Newton-Raphson" then nlm is used to maximize the log likelihood (minimize the neg-
ative log likelihood); otherwise optim is used with the chosen method ("BFGS", "Nelder-Mead",
etc.). If maximization fails a warning is given appropriate to the method. method = "none" may be
used to compute or re-compute the variance-covariance matrix at given starting values (i.e. provid-
ing a previously fitted model as the value of start).

Parameter redundancies are common in open-population models. The output from openCR.fit
includes the singular values (eigenvalues) of the Hessian - a useful post-hoc indicator of redundancy
(e.g., Gimenez et al. 2004). Eigenvalues are scaled so the largest is 1.0. Very small scaled values
represent redundant parameters - in my experience with simple JSSA models a threshold of 0.00001
seems effective.

[There is an undocumented option to fix specific ‘beta’ parameters.]

Numeric ages may be grouped into age classes by providing ‘agebreaks’. In models, ~age then
refers to the age-class factor. See the vignette for more detail.

Value

If details$LLonly == TRUE then a numeric vector is returned with logLik in position 1, followed
by the named coefficients.

Otherwise, an object of class ‘openCR’ with components

openCR.fit 53

call function call

capthist saved input (unique histories; see covariates(capthist)$freq for frequencies)

type saved input

model saved input

distribution saved input

mask saved input

detectfn saved input

binomN saved input

movementmodel saved input

edgemethod saved input

usermodel saved input

moveargsi relative positions of move.a and move.b arguments

kernel coordinates of kernel (movement models only)

start vector of starting values for beta parameters

link saved input

fixed saved input

timecov saved input

sessioncov saved input

agecov saved input

dframe saved input

dframe0 saved input

details saved input

method saved input

ncores saved input (NULL replaced with default)

design reduced design matrices, parameter table and parameter index array for actual
animals (see openCR.design)

design0 reduced design matrices, parameter table and parameter index array for ‘naive’
animal (see openCR.design)

parindx list with one component for each real parameter giving the indices of the ‘beta’
parameters associated with each real parameter

primaryintervals

intervals between primary sessions

vars vector of unique variable names in model

betanames names of beta parameters

realnames names of fitted (real) parameters

sessionlabels name of each primary session

fit list describing the fit (output from nlm or optim)

beta.vcv variance-covariance matrix of beta parameters

54 openCR.fit

eigH vector of eigenvalue corresponding to each beta parameter

version openCR version number

starttime character string of date and time at start of fit

proctime processor time for model fit, in seconds

The environment variable RCPP_PARALLEL_NUM_THREADS is updated with the value of ncores
if provided.

Note

Different parameterisations lead to different model fits when used with the default ‘model’ argument
in which each real parameter is constrained to be constant over time.

The JSSA implementation uses summation over feasible ’birth’ and ’death’ times for each capture
history, following Pledger et al. (2010). This enables finite mixture models for individual capture
probability (not fully tested), flexible handling of additions and losses on capture (aka removals)
(not yet programmed), and ultimately the extension to ‘unknown age’ as in Pledger et al. (2009).

openCR uses the generalized matrix inverse ‘ginv’ from the MASS package rather than ‘solve’ from
base R, as this seems more robust to singularities in the Hessian. Also, the default maximization
method is ‘BFGS’ rather than ‘Newton-Raphson’ as BFGS appears more robust in the presence of
redundant parameters.

Earlier versions of openCR.fit computed latent class membership probabilities for each individual
in finite mixture models and saved them in component ‘posterior’. Now see classMembership for
that functionality.

From 1.5.0 onwards the number of threads uses the environment variable RCPP_PARALLEL_NUM_THREADS,
as in secr.fit. This may be set once in a session with secr::setNumThreads.

The default movement arguments changed in openCR 2.1.1. Now kernelradius = 30, sparsekernel
= TRUE.

References

Gimenez, O., Viallefont, A., Catchpole, E. A., Choquet, R. and Morgan, B. J. T. (2004) Methods
for investigating parameter redundancy. Animal Biodiversity and Conservation 27, 561–572.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133–140.

Pledger, S., Efford, M., Pollock. K., Collazo, J. and Lyons, J. (2009) Stopover duration analysis
with departure probability dependent on unknown time since arrival. In: D. L. Thompson, E. G.
Cooch and M. J. Conroy (eds) Modeling Demographic Processes in Marked Populations. Springer.
Pp. 349–363.

Pledger, S., Pollock, K. H. and Norris, J. L. (2010) Open capture–recapture models with hetero-
geneity: II. Jolly-Seber model. Biometrics 66, 883–890.

Pradel, R. (1996) Utilization of capture-mark-recapture for the study of recruitment and population
growth rate. Biometrics 52, 703–709.

Schwarz, C. J. and Arnason, A. N. (1996) A general methodology for the analysis of capture-
recapture experiments in open populations. Biometrics 52, 860–873.

openCRlist 55

See Also

classMembership.openCR, derived.openCR, openCR.design, par.openCR.fit, predict.openCR,
summary.openCR

Examples

Not run:

CJS default
openCR.fit(ovenCH)

POPAN Jolly-Seber Schwarz-Arnason, lambda parameterisation
L1 <- openCR.fit(ovenCH, type = 'JSSAl')
predict(L1)

JSSA1 <- openCR.fit(ovenCH, type = 'JSSAf')
JSSA2 <- openCR.fit(ovenCH, type = 'JSSAf', model = list(phi~t))
JSSA3 <- openCR.fit(ovenCH, type = 'JSSAf', model = list(p~t,phi~t))
AIC (JSSA1, JSSA2, JSSA3)
predict(JSSA1)

RMdata <- RMarkInput (join(reduce(ovenCH, by = "all")))
if (require(RMark)) {

MarkPath <- 'c:/Mark/'
if (!all (nchar(Sys.which(c('mark.exe', 'mark64.exe', 'mark32.exe'))) < 2)) {

openCHtest <- process.data(RMdata, model = 'POPAN')
openCHPOPAN <- mark(data = openCHtest, model = 'POPAN',

model.parameters = list(p = list(formula = ~1),
pent = list(formula = ~1),
Phi = list(formula = ~1)))

popan.derived(openCHtest, openCHPOPAN)
cleanup(ask = FALSE)

} else message ("mark.exe not found")
} else message ("RMark not found")

End(Not run)

openCRlist Bundle openCR Models

Description

Fitted models are bundled together for convenience.

56 par.openCR.fit

Usage

openCRlist (...)
S3 method for class 'openCRlist'
x[i]

Arguments

... openCR objects

x openCRlist

i indices

Details

openCRlist forms a special list (class ‘openCRlist’) of fitted model (openCR) objects. This may
be used as an argument of AIC, predict, make.table etc.

Methods are provided for the generic function c and list extraction ‘[’.

Value

openCRlist object

See Also

AIC.openCR predict.openCR make.table

Examples

Not run:
fit0 <- openCR.fit (dipperCH)
fitt <- openCR.fit (dipperCH, model=phi~t)
fits <- openCRlist(fit0,fitt)
AIC(fits)
make.table(fits, 'phi')

End(Not run)

par.openCR.fit Fit Multiple openCR Models

Description

This function is a wrapper for openCR.fit.

par.openCR.fit 57

Usage

par.openCR.fit (arglist, ncores = 1, seed = 123, trace = FALSE, logfile = NULL,
prefix = "")

Arguments

arglist list of argument lists for secr.fit or a character vector naming such lists

ncores integer number of cores used by parallel::makeClusters()

seed integer pseudorandom number seed

trace logical; if TRUE intermediate output may be logged

logfile character name of file to log progress reports

prefix character prefix for names of output

Details

In openCR >= 1.5.0, setting ncores > 1 is deprecated and triggers a warning: multithreading makes
it faster to set ncores = 1 in par.openCR.fit.

trace overrides any settings in arglist.

It is convenient to provide the names of the capthist and mask arguments in each component of
arglist as character values (i.e. in quotes); objects thus named are exported from the workspace to
each worker process (see Examples).

Using ncores>1 is obsolete under the multithreading regime in openCR >= 1.5.0. It is usually
slower than ncores = 1. If used it has these effects:

– worker processes are generated using the parallel package,

– one model is fitted on each worker, and

– if no logfile name is provided then a temporary file name will be generated in tempdir().

Value

For par.openCR.fit - openCRlist of model fits (see openCR.fit and openCRlist). Names are
created by prefixing prefix to the names of argslist. If trace is TRUE then the total execution
time and finish time are displayed.

Note

Any attempt in arglist to set ncores > 1 for a particular openCR fit was ignored in openCR <
1.5.0. Now it is allowed.

See Also

openCR.fit, Parallel, make.table, openCRlist

58 pkernel

Examples

Not run:

m1 <- list(capthist = ovenCH, model = list(p~1, phi~1))
m2 <- list(capthist = ovenCH, model = list(p~session, phi~1))
m3 <- list(capthist = ovenCH, model = list(p~session, phi~session))
setNumThreads(7) # on quadcore Windows PC
fits <- par.openCR.fit (c('m1','m2','m3'), ncores = 1)
AIC(fits)

End(Not run)

pkernel Kernel Distribution Functions

Description

Distribution of distance moved for each of the main movement kernels. Theoretical probability den-
sity, cumulative distribution function, and quantile function (inverse of the cumulative distribution
function).

Usage

pkernel(q, movementmodel = c("BVN", "BVE", "BVC", "BVT", "RDE", "RDG", "RDL"),
move.a, move.b, truncate = Inf, lower.tail = TRUE)

dkernel(r, movementmodel = c("BVN", "BVE", "BVC", "BVT", "RDE", "RDG", "RDL"),
move.a, move.b, truncate = Inf)

qkernel(p, movementmodel = c("BVN", "BVE", "BVC", "BVT", "RDE", "RDG", "RDL"),
move.a, move.b, truncate = Inf, lower.tail = TRUE)

gkernel(r, movementmodel = c("BVN", "BVE", "BVC", "BVT", "RDE", "RDG", "RDL"),
move.a, move.b, truncate = Inf)

Arguments

p numeric vector of cumulative probabilities (0.5 for median)
r numeric vector of distance moved
q numeric vector of quantiles (distance moved)
movementmodel character (see Movement models and openCR-vignette.pdf)
move.a numeric parameter of movement kernel
move.b numeric parameter of movement kernel
truncate numeric q value at which distribution truncated
lower.tail logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].

pkernel 59

Details

Some formulae are given in openCR-vignette.pdf. gkernel gives the 2-D probability density of the
bivariate kernel g(r) = f(r)/(2πr); the remaining functions describe the distribution of distance
moved f(r).

Computation of qkernel for movementmodel = 'BVE' uses numerical root finding (function uniroot).

Truncation (truncate = limit for finite limit) adjusts probabilities upwards by 1/pkernel(limit,...,
truncate = Inf) so that pkernel(limit, ..., truncate = limit) equals 1.0. By default the distribution is
not truncated.

Value

For pkernel –

Vector of cumulative probabilities corresponding to q. The cumulative probability is 1.0 for q >
truncate.

For dkernel –

Vector of probability density at radial distance r (zero for r > truncate).

For qkernel –

Vector of quantiles (distances moved) corresponding to cumulative probabilities p.

For gkernel –

Vector of 2-D probability density at radial distance r (zero for r > truncate).

References

Efford, M. G. and Schofield, M. R. (2022) A review of movement models in open population
capture–recapture. Methods in Ecology and Evolution 13, 2106–2118. https://doi.org/10.1111/2041-
210X.13947

See Also

Movement models, make.kernel, matchscale

Examples

plot 3 distributions chosen with matchscale to intersect at p = 0.5
q <- 0:100
plot(q, pkernel(q, 'BVN', 34), type = 'l', ylab = 'Cumulative probability')
lines(q, pkernel(q, 'BVT', move.a = 104, move.b = 5), col = 'darkgreen', lwd = 2)
lines(q, pkernel(q, 'BVT', move.a = 40, move.b = 1), col = 'orange', lwd = 2)
points(40, 0.5, pch = 16)
legend(62, 0.36, lty=1, lwd = 2, col = c('black','darkgreen','orange'),

legend = c('BVN sigma=34', 'BVT a=104, b=5', 'BVT a=40, b=1'))

median
abline(v = qkernel(0.5, 'BVN', 34))

60 plot.derivedopenCR

plot.derivedopenCR Plot Derived Estimates

Description

Session-specific estimates of the chosen parameter are plotted.

Usage

S3 method for class 'derivedopenCR'
plot(x, par = "phi", add = FALSE, xoffset = 0, ylim = NULL,

useintervals = TRUE, intermediate.x = TRUE, ...)

Arguments

x openCR object from openCR.fit

par character names of parameter to plot

add logical; if TRUE then points are added to an existing plot

xoffset numeric offset to be added to all x values

ylim numeric vector of limits on y-axis

useintervals logical; if TRUE then x values are spaced according to the intervals attribute

intermediate.x logical; if TRUE then turnover parameters are plotted at the mid point on the x
axis of the interval to which they relate

... other arguments passed to plot, points and segments

Details

If ylim is not provided it is set automatically.

Confidence intervals are not available in this version.

Value

The x coordinates (including xoffset) are returned invisibly.

See Also

plot.openCR

plot.openCR 61

Examples

Not run:

fit <- openCR.fit(dipperCH, type='JSSAfCL', model = phi~session)
der <- derived(fit)
plot(der,'N', pch = 16, cex = 1.3)

End(Not run)

plot.openCR Plot Estimates

Description

Session-specific estimates of the chosen parameter are plotted.

Usage

S3 method for class 'openCR'
plot(x, par = "phi", newdata = NULL, add = FALSE, xoffset = 0, ylim = NULL,
useintervals = TRUE, CI = TRUE, intermediate.x = TRUE, alpha = 0.05, stratum = 1, ...)

Arguments

x openCR object from openCR.fit
par character names of parameter to plot
newdata dataframe of predictor values for predict (optional)
add logical; if TRUE then points are added to an existing plot
xoffset numeric offset to be added to all x values
ylim numeric vector of limits on y-axis
useintervals logical; if TRUE then x values are spaced according to the intervals attribute
CI logical; if TRUE then 1-alpha confidence intervals are plotted
intermediate.x logical; if TRUE then turnover parameters are plotted at the mid point on the x

axis of the interval to which they relate
alpha numeric confidence level default (alpha = 0.05) is 95% interval
stratum numeric; stratum to plot if more than one
... other arguments passed to plot, points and segments

Details

If ylim is not provided it is set automatically.

For customization you may wish to prepare a base plot with plot(... , type = 'n') and use add
= TRUE.

62 PPNpossums

Value

The x coordinates (including xoffset) are returned invisibly.

See Also

predict, plot.derivedopenCR)

Examples

Not run:

fit <- openCR.fit(join(ovenCH), type='CJS', model = phi~session)
plot(fit,'phi', pch = 16, cex=1.3, yl=c(0,1))

End(Not run)

PPNpossums Orongorongo Valley Brushtail Possums

Description

A subset of brushtail possum (Trichosurus vulpecula) data from the Orongorongo Valley live-
trapping study of Efford (1998) and Efford and Cowan (2005) that was used by Pledger, Pollock
and Norris (2003, 2010). The OVpossumCH dataset in secr is a different selection of data from the
same study. Consult ?OVpossumCH for more detail.

The data comprise captures in February of each year from 1980 to 1988.

Usage

FebpossumCH

Format

The format is a 9-session secr capthist object. Capture locations are not included.

Details

The data are captures of 448 animals (175 females and 273 males) over 9 trapping sessions com-
prising 4–10 occasions each. All were independent of their mothers, but age was not otherwise
distinguished. The individual covariate sex takes values ‘F’ or ‘M’.

Pledger, Pollock and Norris (2010) fitted 2-class finite mixture models for capture probability p
and apparent survival phi, with or without allowance for temporal (between year) variation, using
captures from only the first day of each trapping session. The first-day data relate to 270 individuals
(115 females and 155 males).

PPNpossums 63

Source

M. Efford unpubl. See Efford and Cowan (2004) for acknowledgements.

References

Efford, M. G. (1998) Demographic consequences of sex-biased dispersal in a population of brushtail
possums. Journal of Animal Ecology 67, 503–517.

Efford, M. G. and Cowan, P. E. (2004) Long-term population trend of Trichosurus vulpecula in the
Orongorongo Valley, New Zealand. In: The Biology of Australian Possums and Gliders. Edited by
R. L. Goldingay and S. M. Jackson. Surrey Beatty & Sons, Chipping Norton. Pp. 471–483.

Pledger, S., Pollock, K. H. and Norris, J. L. (2010) Open capture–recapture models with hetero-
geneity: II. Jolly–Seber model. Biometrics 66, 883–890.

Examples

summary(FebpossumCH)
m.array(FebpossumCH)
JS.counts(FebpossumCH)

FebD1CH <- subset(FebpossumCH, occasion = 1)

Not run:

reading the text file 'poss8088.data'

datadir <- system.file('extdata', package = 'openCR')
poss8088df <- read.table (paste0(datadir,'/poss8088.data'), header = TRUE)
capt <- poss8088df[,c('session','id','day','day','sex')]

duplication of day is a trick to get a dummy trapID column in the right place
this is needed because make.capthist does not have nonspatial option
capt$day.1[] <- 1

keep only February samples
capt <- capt[capt$session %% 3 == 1,]

build nonspatial secr capthist object using dummy trapping grid
FebpossumCH <- make.capthist(capt, make.grid(1,2,ID='numx'))
discard dummy traps objects
for (i in 1:9) attr(FebpossumCH[[i]], 'traps') <- NULL
names(FebpossumCH) <- 1980:1988
sessionlabels(FebpossumCH) <- 1980:1988

End(Not run)

64 predict.openCR

predict.openCR openCR Model Predictions

Description

Evaluate an openCR capture–recapture model. That is, compute the ‘real’ parameters corresponding
to the ‘beta’ parameters of a fitted model for arbitrary levels of any variables in the linear predictor.

Usage

S3 method for class 'openCR'
predict(object, newdata = NULL, se.fit = TRUE, alpha = 0.05, savenew = FALSE, ...)
S3 method for class 'openCRlist'
predict(object, newdata = NULL, se.fit = TRUE, alpha = 0.05, savenew = FALSE, ...)

Arguments

object openCR object output from openCR.fit

newdata optional dataframe of values at which to evaluate model

se.fit logical for whether output should include SE and confidence intervals

alpha alpha level

savenew logical; if TRUE then newdata is saved as an attribute

... other arguments passed to makeNewData

Details

Predictions are provided for each row in ‘newdata’. The default (constructed by makeNewData) is
to limit those rows to the first-used level of factor predictors; to include all levels pass all.levels
= TRUE to makeNewData in the . . . argument.

See Also

AIC.openCR, openCR.fit

Examples

Not run:

c1 <- openCR.fit(ovenCH, type='CJS', model=phi~session)
predict(c1)

End(Not run)

print.derivedopenCR 65

print.derivedopenCR Print Method for Derived Estimates

Description

Formats output from derived.openCR.

Usage

S3 method for class 'derivedopenCR'
print(x, Dscale = NULL, legend = FALSE, ...)

Arguments

x object from derived.openCR

Dscale numeric optional multiplier for densities (overrides saved Dscale)

legend logical. if TRUE then a legend is provided to column headings

... other arguments passed to print.data.frame

Details

By default (i.e. when not not specified in the in the . . . argument), row.names = FALSE and digits
= 4.

See Also

derived.openCR

print.openCR Print or Summarise openCR Object

Description

Print results from fitting a spatially explicit capture–recapture model, or generate a list of summary
data.

Usage

S3 method for class 'openCR'
print(x, newdata = NULL, alpha = 0.05, svtol = 1e-5,...)

S3 method for class 'openCR'
summary(object, newdata = NULL, alpha = 0.05, svtol = 1e-5, deriv = FALSE, ...)

66 print.openCR

Arguments

x openCR object output from openCR.fit

object openCR object output from openCR.fit

newdata optional dataframe of values at which to evaluate model

alpha alpha level

svtol threshold for non-null eigenvalues when computing numerical rank

deriv logical; if TRUE then table of derived parameters is calculated

... other arguments passed to derived.openCR by summary.openCR

Details

Results are potentially complex and depend upon the analysis (see below). Optional newdata should
be a dataframe with a column for each of the variables in the model. If newdata is missing then a
dataframe is constructed automatically. Default newdata are for a naive animal on the first occa-
sion; numeric covariates are set to zero and factor covariates to their base (first) level. Confidence
intervals are 100 (1 – alpha) % intervals.

call the function call
time date and time fitting started
N animals number of distinct animals detected
N captures number of detections
N sessions number of sampling occasions
Model model formula for each ‘real’ parameter
Fixed fixed real parameters
N parameters number of parameters estimated
Log likelihood log likelihood
AIC Akaike’s information criterion
AICc AIC with small sample adjustment (Burnham and Anderson 2002)
Beta parameters coef of the fitted model, SE and confidence intervals
Eigenvalues scaled eigenvalues of Hessian matrix (maximum 1.0)
Numerical rank number of eigenvalues exceeding svtol
vcov variance-covariance matrix of beta parameters
Real parameters fitted (real) parameters evaluated at base levels of covariates

AICc is computed with the default sample size (number of individuals) and parameter count (use.rank
= FALSE).

Value

The summary method constructs a list of outputs similar to those printed by the print method, but
somewhat more concise and re-usable:

versiontime secr version, and date and time fitting started
traps* detector summary
capthist capthist summary (primary and secondary sessions, numbers of animals and detections)

read.inp 67

intervals intervals between primary sessions
mask* mask summary
modeldetails miscellaneous model characteristics (type etc.)
AICtable single-line output of AIC.openCR
coef table of fitted coefficients with CI
predicted predicted values (‘real’ parameter estimates)
derived output of derived.openCR (optional)

* spatial models only

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. Second edition. New York: Springer-Verlag.

See Also

AIC.openCR, openCR.fit

Examples

Not run:

c1 <- openCR.fit(ovenCH, type='CJS', model=phi~session)
c1

End(Not run)

read.inp Import Data from RMark Input Format

Description

read.inp forms a capthist object from a MARK input (.inp) file.

Usage

read.inp(filename, ngroups = 1, grouplabel = 'group', grouplevels = NULL,
covnames = NULL, skip = 0)

68 rev.capthist

Arguments

filename character file name including ‘.inp’.

ngroups integer number of group columns in input

grouplabel character

grouplevels vector with length equal to number of groups

covnames character vector of additional covariates names, one per covariate column

skip integer number of lines to skip at start of file

Details

Comments bracketed with ‘/*‘ and ‘*/’ will be removed automatically.

If grouplevels is specified then ngroups is taken from the number of levels (ngroups is over-
ridden). An individual covariate is output, named according to grouplabel. The order of levels
in grouplevels should match the order of the group frequency columns in the input. This also
determines the ordering of levels in the resulting covariate.

Value

A single-session capthist object with no traps attribute.

See Also

RMarkInput, unRMarkInput

Examples

datadir <- system.file('extdata', package = 'openCR')
dipperCH <- read.inp(paste0(datadir, '/ed.inp'), ngroups = 2)
summary(dipperCH)

rev.capthist Reverse Primary Sessions

Description

The rev method for capthist objects reverses the order of the primary sessions while retaining the
order of secondary sessions within each primary session.

Usage

S3 method for class 'capthist'
rev(x)

simulation 69

Arguments

x multi-session capthist object from secr

Details

rev() is used to demonstrate ’reversed time’ analyses (Nichols 2016) in which seniority (gamma) is
estimated as reversed-time survival (phi) The approach is numerically equivalent to direct modelling
of seniority (see Examples). Direct modelling allows more control and is more intuitive.

If x is not overtly multi-session and has no intervals attribute then each occasion is treated as a
primary session.

Value

Capthist object with same observations as input, but re-ordered. The order of attributes sessionlabels
and intervals is also reversed. A default intervals attribute is added if the input lacks one.

References

Nichols, J. D. (2016) And the first one now will later be last: time-reversal in Cormack–Jolly–Seber
Models. Statistical Science 31, 175–190.

Examples

summary(rev(ovenCH), terse = TRUE)

These three models give the same result for gamma except for
gamma(1982) which is confounded with p and not separately estimable:

Not run:

dipperPradel <- openCR.fit(dipperCH, type = "Pradelg", model = list(p~t, phi~t, gamma~t))
revdipper <- openCR.fit(rev(dipperCH), model=list(p~t, phi~t))
dipperJSSA <- openCR.fit(dipperCH, type='JSSAgCL', model=list(p~t, phi~t, gamma~t))

predict(dipperPradel)$gamma
predict(revdipper)$phi
predict(dipperJSSA)$gamma

End(Not run)

simulation Simulate Capture Histories

Description

Generate non-spatial or spatial open-population data and fit models.

70 simulation

Usage

sim.nonspatial (N, turnover = list(), p, nsessions, noccasions = 1, intervals = NULL,
recapfactor = 1, seed = NULL, savepopn = FALSE, ...)

runsim.nonspatial (nrepl = 100, seed = NULL, ncores = NULL, fitargs = list(),
extractfn = predict, ...)

runsim.spatial (nrepl = 100, seed = NULL, ncores = NULL, popargs = list(),
detargs = list(), fitargs = list(), extractfn = predict, intervals = NULL)

sumsims (sims, parm = 'phi', session = 1, dropifnoSE = TRUE, svtol = NULL,
maxcode = 3, true = NULL)

runsim.RMark (nrepl = 100, model = "CJS", model.parameters = NULL, extractfn,
seed = NULL, ...)

Arguments

N integer population size

turnover list as described for turnover

p numeric detection probability

nsessions number of primary sessions

noccasions number of secondary sessions per primary session

intervals intervals between primary sessions (see Details)

recapfactor numeric multiplier for capture probability after first capture

seed random number seed see random numbers

savepopn logical; if TRUE the generated population is saved as an attribute of the capthist
object

... other arguments passed to sim.popn (sim.nonspatial) or sim.nonspatial (run-
sims)

nrepl number of replicates

ncores integer number of cores to be used for parallel processing (see Details)

popargs list of arguments for sim.popn

detargs list of arguments for sim.capthist

fitargs list of arguments for openCR.fit

extractfn function applied to each fitted openCR model

sims list output from runsim.nonspatial or runsim.spatial

parm character name of parameter to summarise

session integer vector of session numbers to summarise

dropifnoSE logical; if TRUE then replicates are omitted when SE missing for parm

svtol numeric; minimum singular value (eigenvalue) considered non-zero

simulation 71

maxcode integer; maximum accepted value of convergence code

true true value of requested parm in given session

model character; RMark model type

model.parameters

list with RMark model specification (see ?mark)

Details

For sim.nonspatial – If intervals is specified then the number of primary and secondary ses-
sions is inferred from intervals and nsessions and noccasions are ignored. If N and p are
vectors of length 2 then subpopulations of the given initial size are sampled with the differing cap-
ture probabilities and the resulting capture histories are combined.

runsim.spatial is a relatively simple wrapper for sim.popn, sim.capthist, and openCR.fit.
Some arguments are set automatically: the sim.capthist argument ’renumber’ is always FALSE;
argument ’seed’ is ignored within ’popargs’ and ’detargs’; if no ’traps’ argument is provided in
’detargs’ then ’core’ from ’popargs’ will be used; detargs$popn and fitargs$capthist are derived
from the preceding step. The ’type’ specified in fitargs may refer to a non-spatial or spatial open-
population model (’CJS’, ’JSSAsecrfCL’ etc.). If the intervals argument is specified it is used to
set the intervals attribute of the simulated capthist object; turnover parameters in sim.popn are not
scaled by intervals.

Control of parallel processing changed in openCR 1.5.0 to conform to secr. In runsim.nonspatial
and runsim.spatial, if ncores is NULL (the default) then the number of cores used for multi-
threading by openCR.fit is controlled by the environment variable RCPP_PARALLEL_NUM_THREADS.
Use the secr function setNumThreads to set RCPP_PARALLEL_NUM_THREADS to a value
greater than the default (2, from openCR 1.5 onwards).

Otherwise, (ncores specified in runsim.nonspatial or runsim.spatial) ’ncores’ is set to 1 for each
replicate and the replicates are split across the specified number of cores.

sumsims assumes output from runsim.nonspatial and runsim.spatial with ‘extractfn = predict’
or ‘extractfn = summary’. Missing SE usually reflects non-identifiability of a parameter or failure
of maximisation, so these replicates are dropped by default. If svtol is specified then the rank of
the Hessian is determined by counting eigenvalues that exceed svtol, and replicates are dropped
if the rank is less than the number of beta parameters. A value of 1e-5 is suggested for svtol in
AIC.openCR, but smaller values may be appropriate for larger models (MARK has its own algorithm
for this threshold).

Replicates are also dropped by sumsims if the convergence code exceeds ’maxcode’. The max-
imisation functions nlm (used for method = ’Newton-Raphson’, the default), and optim (all other
methods) return different convergence codes; their help pages should be consulted. The default is
to accept code = 3 from nlm, although the status of such maximisations is ambiguous.

Value

sim.nonspatial –

A capthist object representing an open-population sample

runsim.nonspatial and runsim.spatial –

72 simulation

List with one component (output from extractfn) for each replicate. Each component also has at-
tributes ’eigH’ and ’fit’ taken from the output of openCR.fit. See Examples to extract convergence
codes from ’fit’ attribute.

sumsims –

Data.frame with rows ‘estimate’, ‘SE.estimate’, ‘lcl’, ‘ucl’, ‘RSE’, ‘CI.length’ and columns for
median, mean, SD and n. If ‘true’ is specified there are additional rows are ‘Bias’ and ‘RB’, and
columns for ‘rRMSE’ and ‘COV’.

See Also

sim.popn, sim.capthist

Examples

Not run:

cores <- 2 # for CRAN check; increase as available

ch <- sim.nonspatial(100, list(phi = 0.7, lambda = 1.1), p = 0.3, nsessions = 8, noccasions=2)
openCR.fit(ch, type = 'CJS')

turnover <- list(phi = 0.85, lambda = 1.0, recrmodel = 'constantN')
set.seed(123)

using type = 'JSSAlCL' and extractfn = predict

fitarg <- list(type = 'JSSAlCL', model = list(p~t, phi~t, lambda~t))
out <- runsim.nonspatial(nrepl = 100, N = 100, ncores = cores, turnover = turnover,

p = 0.2, recapfactor = 4, nsessions = 10, noccasions = 1, fitargs = fitarg)
sumsims(out, 'lambda', 1:10)

using type = 'Pradelg' and extractfn = derived
homogeneous p
fitarg <- list(type = 'Pradelg', model = list(p~t, phi~t, gamma~t))
outg <- runsim.nonspatial(nrepl = 100, N = 100, ncores = cores, turnover = turnover,

p = 0.2, recapfactor = 4, nsessions = 10, noccasions = 1,
fitargs = fitarg, extractfn = derived)

apply(sapply(outg, function(x) x$estimates$lambda),1,mean)

turnover <- list(phi = 0.85, lambda = 1.0, recrmodel = 'discrete')

2-class mixture for p
outg2 <- runsim.nonspatial(nrepl = 100, N = c(50,50), ncores = cores, turnover = turnover,

p = c(0.3,0.9), recapfactor = 1, nsessions = 10, noccasions = 1,
fitargs = fitarg, extractfn = derived)

outg3 <- runsim.nonspatial(nrepl = 100, N = c(50,50), ncores = cores, turnover = turnover,
p = c(0.3,0.3), recapfactor = 1, nsessions = 10, noccasions = 1,
fitargs = fitarg, extractfn = derived)

apply(sapply(outg2, function(x) x$estimates$lambda),1,mean)

plot(2:10, apply(sapply(outg2, function(x) x$estimates$lambda),1,mean)[-1],

squeeze 73

type='o', xlim = c(1,10), ylim = c(0.9,1.1))

RMark

extfn <- function(x) x$results$real$estimate[3:11]
MarkPath <- 'c:/mark' # customise as needed
turnover <- list(phi = 0.85, lambda = 1.0, recrmodel = 'discrete')
outrm <- runsim.RMark (nrepl = 100, model = 'Pradlambda', extractfn = extfn,

model.parameters = list(Lambda=list(formula=~time)),
N = c(200,200), turnover = turnover, p = c(0.3,0.9),
recapfactor = 1, nsessions = 10, noccasions = 1)

extout <- apply(do.call(rbind, outrm),1,mean)

Spatial

grid <- make.grid()
msk <- make.mask(grid, type = 'trapbuffer', nx = 32)
turnover <- list(phi = 0.8, lambda = 1)
poparg <- list(D = 10, core = grid, buffer = 100, Ndist = 'fixed', nsessions = 6,

details = turnover)
detarg <- list(noccasions = 5, detectfn = 'HHN', detectpar = list(lambda0 = 0.5, sigma = 20))
fitarg <- list(type = 'JSSAsecrfCL', mask = msk, model = list(phi~1, f~1))
sims <- runsim.spatial (nrepl = 7, ncores = cores, pop = poparg, det = detarg, fit = fitarg)
sumsims(sims)

extract the convergence code from nlm for each replicate in preceding simulation
sapply(lapply(sims, attr, 'fit'), '[[', 'code')
if method != 'Newton-Raphson then optim is used and the code is named 'convergence'
sapply(lapply(sims, attr, 'fit'), '[[', 'convergence')

End(Not run)

squeeze Unique Capture Histories

Description

Compresses or expands capthist objects.

Usage

squeeze(x)
unsqueeze(x)

Arguments

x secr capthist object

74 strata

Details

Although squeeze may be applied to spatial capthist objects, the effect is often minimal as most
spatial histories are unique.

The ‘freq’ covariate is used by openCR.fit to weight summaries and likelihoods. It is currently
ignored by secr.fit.

Value

Both functions return a capthist object with one row for each unique capture history (including
covariates). The individual covariate ‘freq’ records the number of instances of each unique history
in the input.

See Also

openCR.fit

Examples

squeeze(captdata)

strata Stratum names

Description

Extract or replace the stratum names of a capthist object.

Usage

strata(object, ...)
strata(object) <- value

Arguments

object object with ‘stratum’ attribute e.g. capthist

value character vector or vector that may be coerced to character, one value per stratum

... other arguments (not used)

Details

Replacement values will be coerced to character.

Value

a character vector with one value for each session in capthist.

stratify 75

Note

openCR uses the term ‘stratum’ for an independent set of samples, rather like a ‘session’ in secr.
Strata offer flexibility in defining and evaluating between-stratum models. The log likelihood for
a stratified model is the sum of the separate stratum log likelihoods. Although this assumes in-
dependence of sampling, parameters may be shared across strata, or stratum-specific parameter
values may be functions of stratum-level covariates. The detector array and mask can be specified
separately for each stratum.

For open population analyses, each stratum comprises both primary and secondary sessions of Pol-
lock’s robust design ‘joined’ in a single-session capthist object.

The function stratify can be useful for manipulating data into multi-stratum form.

Models are stratified only if the argument stratified of openCR.fit() is set to TRUE. Strata will
otherwise be treated as primary sessions and concatenated as usual with join().

See Also

openCR.fit, session, stratify

Examples

artificial example, treating years as strata
strata(ovenCH)

stratify Stratify Capture-Recapture Data

Description

Arrange existing capthist data in stratified form.

Usage

stratify(..., intervals = NULL, MoreArgs = list(), covariate = NULL, bytraps = FALSE)

Arguments

... one or more multi-session capthist objects, or a list of such objects

intervals list of intervals vectors, one for each multi-session capthist in . . .

MoreArgs list of other arguments passed to join

covariate character; name of individual or trap covariate to stratify by

bytraps logical; if TRUE then covariate is interpreted as the name of a detector covariate

76 ucare.cjs

Details

The argument . . . may be

1. a list of single-session capthist, one for each stratum (sessions already joined)

2. a list of multi-session capthist, one for each stratum (sessions will be joined)

3. one single-session capthist, to split by covariate (sessions already joined)

4. one multi-session capthist, to be joined as one then split by covariate

Cases 1 and 2 result in one stratum for each component of the input list. Cases 3 and 4 result in one
stratum for each level of covariate.

The result in Case 1 is identical to MS.capthist(...).

The argument intervals refers to the intervals between primary sessions before joining (Cases 2,4
only) (see Examples).

MoreArgs may include the arguments remove.dupl.sites, tol, sites.by.name or drop.sites of join;
these otherwise take their default values.

Value

Multi-stratum (multi-session) capthist object for which each component has been ‘join’ed.

See Also

join, MS.capthist, openCR.fit, strata

Examples

FebpossumCH comprises 9 annual February sessions.
The individual covariate 'sex' takes values 'F' and 'M', resulting in two strata.
'intervals' can be omitted as the default does the same job.
ch <- stratify(FebpossumCH, covariate = 'sex', intervals = rep(list(rep(1,8)),2))
summary(ch, terse = TRUE)

ucare.cjs Goodness-of-fit tests for the Cormack-Jolly-Seber model

Description

The package R2ucare (Gimenez et al. 2018, 2022) provides the standard tests for CJS models from
Burnham et al. (1987) along with tests for multi-state models as described by Pradel et al. (2005).
This function is a wrapper for the tests relevant to openCR (see Details). Original papers and the
vignette for R2ucare should be consulted for interpretation.

Usage

ucare.cjs(CH, tests = "all", by = NULL, verbose = TRUE, rounding = 3, ...)

ucare.cjs 77

Arguments

CH capthist object suitable for openCR
tests character vector with the names of specific tests (see Details) or ‘all’
by character name of covariate in CH used to split rows of CH into separate groups
verbose logical; if TRUE then additional details are tabulated
rounding integer number of decimal places in output
... other arguments passed to split.capthist if needed

Details

The possible tests are “test3sr", “test3sm", “test2ct", “test2cl", and “overall_CJS".
If CH is a multi-session object then it will first be collapsed to a single-session object with join as
usual in openCR. If CH has an intervals attribute indicating that the data are from a robust design
(some intervals zero) then it will first be collapsed to one secondary session per primary session,
with a warning.
If by is specified it should point to a categorical variable (factor or character) in the covariates
attribute of CH. Separate tests will be conducted for each group.
R2ucare was removed from CRAN in May 2022, but will return at some point. In the meantime, it
may be necessary to install from GitHub with
if(!require(devtools)) install.packages("devtools") devtools::install_github("oliviergimenez/R2ucare")

Value

A list of results, possibly nested by the grouping variable by. The verbose form includes both the
overall result of each test and its breakdown into components (‘details’).

References

Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C. and Pollock, K. H. (1987) Design and
Analysis Methods for Fish Survival Experiments Based on Release-Recapture. American Fisheries
Society Monograph 5. Bethesda, Maryland, USA.
Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M. and Pradel, R. (2009) U-CARE: Utili-
ties for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography 32,
1071–1074.
Gimenez, O., Lebreton, J.-D., Choquet, R. and Pradel, R. (2018) R2ucare: An R package to perform
goodness-of-fit tests for capture–recapture models. Methods in Ecology and Evolution 9, 1749–
1754.
Gimenez, O., Lebreton, J.-D., Choquet, R. and Pradel, R. (2022) R2ucare: Goodness-of-Fit Tests
for Capture-Recapture Models. R package version 1.0.2. https://github.com/oliviergimenez/
R2ucare/

Lebreton, J.-D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992) Modeling survival and test-
ing biological hypotheses using marked animals: a unified approach with case studies. Ecological
Monographs 62, 67–118.
Pradel, R., Gimenez O. and Lebreton, J.-D. (2005) Principles and interest of GOF tests for multistate
capture–recapture models. Animal Biodiversity and Conservation 28, 189–204.

https://github.com/oliviergimenez/R2ucare/
https://github.com/oliviergimenez/R2ucare/

78 ucare.cjs

See Also

m.array

Examples

if (requireNamespace("R2ucare"))
ucare.cjs(dipperCH, verbose = FALSE, by = 'sex')

Index

∗ datagen
simulation, 69

∗ datasets
dipperCH, 16
Field vole, 19
gonodontisCH, 21
Microtus, 36
PPNpossums, 62

∗ hplot
LLsurface, 28
make.kernel, 30
plot.derivedopenCR, 60
plot.openCR, 61

∗ htest
ucare.cjs, 76

∗ manip
age.matrix, 4
JS.counts, 26
make.table, 33
miscellaneous, 39
openCR.design, 47
read.inp, 67
rev.capthist, 68
squeeze, 73
stratify, 75

∗ models
AIC.openCR, 5
classMembership, 8
derived, 14
makeNewData, 34
modelAverage, 40
strata, 74

∗ model
cloned.fit, 9
openCR.fit, 49
openCRlist, 55
par.openCR.fit, 56

∗ package
openCR-package, 3

∗ print
print.openCR, 65

[.openCRlist (openCRlist), 55

age.matrix, 4, 52
AIC, 7
AIC.openCR, 5, 41, 56, 64, 67, 71
AIC.openCRlist (AIC.openCR), 5

bd.array (JS.counts), 26

capthist, 4
classMembership, 8, 54
classMembership.openCR, 55
cloned.fit, 9
collate, 10
collate.openCR, 34
contour, 29
cumMove, 11
cut, 52
cyclic.fit (Internal), 23

derived, 14
derived.openCR, 55, 65, 66
detectfn, 51
detector, 50
dipperCH, 16
dkernel, 31, 33, 44
dkernel (pkernel), 58

expected.d, 17, 36
extractFocal (moving.fit), 44

FebpossumCH (PPNpossums), 62
Field vole, 19
fieldvoleCH (Field vole), 19

gkernel, 44
gkernel (pkernel), 58
gonodontisCH, 21

79

80 INDEX

Internal, 23
intervals, 26

join, 26, 27, 75, 76
JS.counts, 26, 28
JS.direct, 26, 27, 27

lines, 31
LLsurface, 28
LLsurface.secr, 29
logLik.openCR (AIC.openCR), 5
LR.test, 7

m.array, 6, 78
m.array (JS.counts), 26
make.kernel, 13, 18, 30, 36, 44, 59
make.table, 11, 33, 41, 56, 57
makeNewData, 14, 34, 64
mask, 33, 49
matchscale, 31, 33, 35, 59
Microtus, 36
microtusCH (Microtus), 36
microtusFCH (Microtus), 36
microtusFMCH (Microtus), 36
microtusMCH (Microtus), 36
microtusRDCH (Microtus), 36
miscellaneous, 39
model.matrix, 47, 52
modelAverage, 6, 40
modelAverage.openCR, 11
Movement models, 18, 31, 33, 35, 36, 42, 51,

58, 59
moving.fit, 44
MS.capthist, 76

nlm, 52, 71

openCR (openCR-package), 3
openCR-defunct, 46
openCR-deprecated, 46
openCR-package, 3
openCR.design, 5, 47, 53, 55
openCR.esa (derived), 14
openCR.fit, 3, 4, 6–8, 10, 15, 25, 35, 41, 44,

45, 47, 48, 49, 54, 56, 57, 64, 67, 71,
74–76

openCR.make.newdata (openCR-defunct), 46
openCR.pdot (derived), 14
openCRlist, 34, 41, 55, 57

optim, 52, 71
ovenCH, 4

par.openCR.fit, 34, 55, 56
Parallel, 57
PCH1 (Internal), 23
PCH1secr (Internal), 23
pkernel, 18, 31, 33, 36, 44, 58
plot, 60, 61
plot.derivedopenCR, 60, 62
plot.kernel (make.kernel), 30
plot.mask, 31
plot.openCR, 60, 61
plotKernel (openCR-defunct), 46
points, 60, 61
pointsInPolygon, 12, 13
PPNpossums, 62
pradelloglik (Internal), 23
predict, 61, 62
predict.openCR, 31, 40, 55, 56, 64
predict.openCRlist, 33
predict.openCRlist (predict.openCR), 64
primarysessions (miscellaneous), 39
print.data.frame, 65
print.derivedopenCR, 14, 15, 65
print.openCR, 7, 65
proportionInPolygon (cumMove), 11
prwi (Internal), 23
prwisecr (Internal), 23

qkernel, 18, 31, 33, 44
qkernel (pkernel), 58

random numbers, 70
read.inp, 16, 67
rev.capthist, 68
RMarkInput, 68
runsim.nonspatial (simulation), 69
runsim.RMark (simulation), 69
runsim.spatial (simulation), 69

secondarysessions (miscellaneous), 39
secr.fit, 25, 49, 54
segments, 60, 61
session, 75
setNumThreads, 51
sim.capthist, 71, 72
sim.nonspatial, 70
sim.nonspatial (simulation), 69

INDEX 81

sim.popn, 70–72
simulation, 69
split.capthist, 77
squeeze, 8, 52, 73
strata, 74, 76
strata<- (strata), 74
stratify, 75, 75
summary.kernel (make.kernel), 30
summary.openCR, 55
summary.openCR (print.openCR), 65
sumsims (simulation), 69

turnover, 70

ucare.cjs, 76
uniroot, 59
unRMarkInput, 68
unsqueeze (squeeze), 73

	openCR-package
	age.matrix
	AIC.openCR
	classMembership
	cloned.fit
	collate
	cumMove
	derived
	dipperCH
	expected.d
	Field vole
	gonodontisCH
	Internal
	JS.counts
	JS.direct
	LLsurface
	make.kernel
	make.table
	makeNewData
	matchscale
	Microtus
	miscellaneous
	modelAverage
	Movement models
	moving.fit
	openCR-defunct
	openCR-deprecated
	openCR.design
	openCR.fit
	openCRlist
	par.openCR.fit
	pkernel
	plot.derivedopenCR
	plot.openCR
	PPNpossums
	predict.openCR
	print.derivedopenCR
	print.openCR
	read.inp
	rev.capthist
	simulation
	squeeze
	strata
	stratify
	ucare.cjs
	Index

